History of Linear Algebra

  • Israel Kleiner


Vector Space Quadratic Form Linear Transformation Linear Algebra Bilinear Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. G. Bashmakova and G. S. Smirnova, The Beginnings and Evolution of Algebra, The Mathematical Association of America,2000.(Translated from the Russian by A.Shenitzer.)Google Scholar
  2. 2.
    N. Bourbaki, Elements of the History of Mathematics, Springer-Verlag, 1994.Google Scholar
  3. 3.
    T. Crilly, A gemstone in matrix algebra, Math. Gazette 1992, 76: 182–188.MATHCrossRefGoogle Scholar
  4. 4.
    T. Crilly, Cayley’s anticipation of a generalized Cayley-Hamilton theorem, Hist. Math. 1978, 5: 211–219.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    M. J. Crowe, A History of Vector Analysis, University of Notre Dame Press, 1967.Google Scholar
  6. 6.
    S. S. Demidov, On the history of the theory of linear differential equations, Arch. Hist. Exact Sc. 1983, 28: 369–387.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J. Dieudoneé, Abregé d’Histoire des Mathématiques 1700–1900, vol. I, Hermann, 1978.Google Scholar
  8. 8.
    J.-L. Dorier (ed.), On the Teaching of Linear Algebra, Kluwer, 2000.Google Scholar
  9. 9.
    J.-L. Dorier, A general outline of the genesis of vector space theory, Hist. Math. 1985, 22: 227–261.CrossRefMathSciNetGoogle Scholar
  10. 10.
    D. Fearnley-Sander, Hermann Grassmann and the creation of linear algebra, Amer. Math. Monthly 1979, 86: 809–817.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    J. A. Goulet, The principal axis theorem, The UMAP Journal 1983, 4: 135–156.Google Scholar
  12. 12.
    I. Grattan-Guinness and W. Ledermann, Matrix theory, in: Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences, ed. by I. Grattan-Guinness, Routledge, 1994, vol. 1, pp. 775–786.Google Scholar
  13. 13.
    J. Gray, Finite-dimensional vector spaces, in: Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences, ed. by I. Grattan-Guinness, Routledge, 1994, vol. 2, pp. 947–951.Google Scholar
  14. 14.
    T. L. Hankins, Sir William Rowan Hamilton, The Johns Hopkins University Press, 1980.Google Scholar
  15. 15.
    15. T. Hawkins, Weierstrass and the theory of matrices, Arch. Hist. Exact Sc. 1977, 17: 119–163.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    T. Hawkins, Another look at Cayley and the theory of matrices, Arch. Int. d’Hist. des Sc. 1977, 27: 82–112.MATHMathSciNetGoogle Scholar
  17. 17.
    T. Hawkins, Cauchy and the spectral theory of matrices, Hist. Math. 1975, 2: 1–29.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    T. Hawkins, The theory of matrices in the 19th century, Proc. Int. Congr. Mathematicians (Vancouver), vol. 2, 1974, pp. 561–570.Google Scholar
  19. 19.
    V. J. Katz, A History of Mathematics, 2nd ed., Addison-Wesley, 1998.Google Scholar
  20. 20.
    V. J. Katz, Historical ideas in teaching linear algebra, in Learn from the Masters, ed. by F. Swetz et al, Math. Assoc. of America, 1995, pp. 189–206.Google Scholar
  21. 21.
    E. Knobloch, Determinants, in: Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences, ed. by I. Grattan-Guinness, Routledge, vol. 1, 1994, pp. 766–774.Google Scholar
  22. 22.
    E. Knobloch, From Gauss to Weierstrass: determinant theory and its historical evaluations, in C.Sasakietal(eds), Intersection of History and Mathematics, Birkhäuser, 1994, pp.51–66.Google Scholar
  23. 23.
    G. H. Moore, An axiomatization of linear algebra: 1875–1940, Hist. Math. 1995, 22: 262–303.MATHCrossRefGoogle Scholar
  24. 24.
    T. Muir, The Theory of Determinants in the Historical Order of Development, 4 vols,, Dover, 1960. (The original work was published by Macmillan, 1890–1923.)Google Scholar
  25. 25.
    B. L. van der Waerden, Modern Algebra, 2 vols., Springer-Verlag, 1930–31.Google Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • Israel Kleiner
    • 1
  1. 1.Department of Mathematics and StatisticsYork UniversityTorontoCanada

Personalised recommendations