History of Ring Theory

  • Israel Kleiner


Prime Ideal Division Algebra Algebraic Number Algebraic Function Ring Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. G. Birkhoff and S. MacLane, A Survey of Modern Algebra, Macmillan, 1941.Google Scholar
  2. 2.
    N. Bourbaki, Elements of the History of Mathematics, Springer-Verlag, 1994.Google Scholar
  3. 3.
    D. M. Burton and D. H. Van Osdol, Toward the definition of an abstract ring, in Learn from the Masters, ed. by F. Swetz et al, Math. Assoc. of America, 1995, pp. 241–251.Google Scholar
  4. 4.
    H. Cohn, Advanced Number Theory, Dover, 1980.Google Scholar
  5. 5.
    D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms, Springer-Verlag, 1992.Google Scholar
  6. 6.
    T. Crilly, Invariant theory, in Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences, ed. by I. Grattan-Guinness, Routledge, 1994, pp. 787–793.Google Scholar
  7. 7.
    H. M. Edwards, Dedekind’s invention of ideals, Bull. Lond. Math. Soc. 1983, 15: 8–17.MATHCrossRefGoogle Scholar
  8. 8.
    H. M. Edwards, The genesis of ideal theory, Arch. Hist. Ex. Sci. 1980, 23: 321–378.MATHCrossRefGoogle Scholar
  9. 9.
    H. M. Edwards, Fermat’s Last Theorem: A Genetic Introduction to Algebraic Number Theory, Springer-Verlag, 1977.Google Scholar
  10. 10.
    10. D. Eisenbud, Commutative Algebra, with a View Toward Algebraic Geometry, Springer-Verlag, 1995.Google Scholar
  11. 11.
    A. Fraenkel, Über die Teiler der Null und die Zerlegung von Ringen, Jour. für die Reine und Angew. Math. 1914, 145: 139–176.Google Scholar
  12. 12.
    J. J. Gray, Early modern algebraic geometry, in Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences, ed. by I. Grattan-Guinness, Routledge, 1994, pp. 920–926.Google Scholar
  13. 13.
    K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd ed., Springer-Verlag, 1982.Google Scholar
  14. 14.
    M. Kline, MathematicalThoughtfromAncienttoModernTimes, Oxford University Press, 1972.Google Scholar
  15. 15.
    C. C. MacDuffee, Algebra’s debt to Hamilton, Scripta Math. 1944, 10: 25–35.MATHMathSciNetGoogle Scholar
  16. 16.
    K. H. Parshall, H.M. Wedderburn and the structure theory of algebras, Arch. Hist. Ex. Sci. 1985, 32: 223–349.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    J. H. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer-Verlag, 1992.Google Scholar
  18. 18.
    M. Sono, On congruences, I-IV, Mem.Coll.Sci.Kyoto 1917, 2:203–226, 1918, 3:113–149, 189–197, and 299–308.Google Scholar
  19. 19.
    B. L. van der Waerden, A History of Algebra, Springer-Verlag, 1985.Google Scholar
  20. 20.
    J. H. M. Wedderburn, On hypercomplex numbers, Proc. Lond. Math. Soc..1907, 6:77–118.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • Israel Kleiner
    • 1
  1. 1.Department of Mathematics and StatisticsYork UniversityTorontoCanada

Personalised recommendations