History of Classical Algebra

  • Israel Kleiner


Complex Number Quadratic Equation Polynomial Equation Number System Negative Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. G. Bashmakova and G. S. Smirnova, The Beginnings and Evolution of Algebra, The MathematicalAssociationofAmerica, 2000. (TranslatedfromtheRussianbyA. Shenitzer. )Google Scholar
  2. 2.
    I. G. Bashmakova and G. S. Smirnova, Geometry: The first universal language of mathematics, in: E. Grosholz and H. Breger (eds), The Growth of Mathematical Knowledge, Kluwer, 2000, pp. 331–340.Google Scholar
  3. 3.
    N. Bourbaki, Elements of the History of Mathematics, Springer-Verlag, 1991.Google Scholar
  4. D. E. Dobbs and R. Hanks, A Modern Course on the Theory of Equations, Polygonal Publishing House, 1980.Google Scholar
  5. 5.
    B. Fine and G. Rosenberg, The Fundamental Theorem of Algebra, Springer-Verlag, 1987.Google Scholar
  6. 6.
    J. Hoyrup, Lengths, Widths, Surfaces: A Portrait of Babylonian Algebra and its Kin, Springer-Verlag, 2002.Google Scholar
  7. 7.
    V. Katz, A History of Mathematics, 2nd ed. , Addison-Wesley, 1998.Google Scholar
  8. 8.
    V. Katz, Algebra and its teaching: An historical survey, Journal of Mathematical Behavior 1997, 16: 25–38.CrossRefGoogle Scholar
  9. 9.
    I. Kleiner, Thinking the unthinkable: The story of complex numbers (with a moral), Mathematics Teacher 1988, 81: 583–592.Google Scholar
  10. 10.
    M. Kline, MathematicalThoughtfromAncienttoModernTimes, Oxford University Press, 1972.Google Scholar
  11. 11.
    P. G. Nahin, An Imaginary Tale: The Story of √−1, Princeton University Press, 1998.Google Scholar
  12. 12.
    K. H. Parshall, The art of algebra from al-Khwarizmi to Viète: A study in the natural selection of ideas, History of Science 1988, 26: 129–164.MathSciNetGoogle Scholar
  13. 13.
    H. M. Pycior, George Peacock and the British origins of symbolical algebra, Historia Mathematica 1981, 8: 23–45.CrossRefMathSciNetGoogle Scholar
  14. 14.
    E. Robson, Influence, ignorance, or indifference? Rethinking the relationship between Babylonian and Greek mathematics, Bulletin of the British Society for the History of Mathematics Spring 2005, 4: 1–17.Google Scholar
  15. 15.
    H. W. Turnbull, Theory of Equations, Oliver and Boyd, 1957.Google Scholar
  16. 16.
    S. Unguru, On the need to rewrite the history of Greek mathematics, ArchivefortheHistory of Exact Sciences 1975–76, 15: 67–114.CrossRefMathSciNetGoogle Scholar
  17. 17.
    B. L. van der Waerden, A History of Algebra, from al-Khwarizmi to Emmy Noether, Springer-Verlag, 1985.Google Scholar
  18. 18.
    B. L. van der Waerden, Geometry and Algebra in Ancient Civilizations, Springer-Verlag, 1983.Google Scholar
  19. 19.
    B. L. van der Waerden, Defence of a “shocking” point of view, Archive for the History of Exact Sciences 1975–76, 15: 199–210.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • Israel Kleiner
    • 1
  1. 1.Department of Mathematics and StatisticsYork UniversityTorontoCanada

Personalised recommendations