Advertisement

Correct Equilibrium Shape Equation of Axisymmetric Vesicles

  • N.K. Vaidya
  • H. Huang
  • S. Takagi

Keywords

Geometric Condition Equilibrium Shape Geometric Relation Spherical Vesicle Shape Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BP04]
    Blyth, M.G., Pozrikidis, C.: Solution space of axisymmetric capsules enclosed by elastic membranes. Eur. J. Mech. A/Sol., 23, 877–892 (2004).MATHCrossRefMathSciNetGoogle Scholar
  2. [DBS03]
    Derganc, J., Bozic, B., Svetina, S., Zeks, B.: Equilibrium shape of erythrocytes in rouleau formation. Biophys. J., 84, 1486–1492 (2003).CrossRefGoogle Scholar
  3. [FMB92]
    Fourcade, B., Mutz, K., Bensimon, D.: Experimental and theoretical study of toroidal vesicles. Phys. Rev. Lett., 68, 2551–2554 (1992).CrossRefGoogle Scholar
  4. [Hel73]
    Helfrich, W.: Elastic properties of lipid bilayers—theory and possible experiments. Z. Naturforsch., 28c, 693 (1973).Google Scholar
  5. [HO93]
    Hu, J.-G., Ou-Yang, Z.-C.: Shape equations of the axisymmetric vesicles. Phys. Rev. E, 47, 461–467 (1993).CrossRefGoogle Scholar
  6. [Ino96]
    Inoue, T.: Interaction of surfactants with phospholipid vesicles. In: Vesicles. Marcel Dekker, New York (1996), pp. 152–195.Google Scholar
  7. [JL96]
    Julicher, F., Lipowsky, R.: Shape transformations of vesicles with intramembrane domains. Phys. Rev. E, 53, 2670–2683 (1996).CrossRefGoogle Scholar
  8. [JS94]
    Julicher, F., Seifert, U.: Shape equations for axisymmetric vesicles: a clarification. Phys. Rev. E, 49, 4728–4731 (1994).CrossRefGoogle Scholar
  9. [Kom96]
    Komura, S.: Shape fluctuations of vesicles. In: Vesicles. Marcel Dekker, New York (1996), pp. 198–236.Google Scholar
  10. [KR96]
    Kunieda, H., Rajagopalan, V.: Formation and structure of reverse vesicles. In: Vesicles. Marcel Dekker, New York (1996), pp. 80–103.Google Scholar
  11. [MFR91]
    Miao, L., Fourcade, B., Rao, M., Wortis, M.: Equillibrium budding and vesiculation in the curvature model of fluid lipid vesicles. Phys. Rev. A, 43, 6843–6856 (1991).CrossRefGoogle Scholar
  12. [MBB91]
    Mutz, M., Bensimon, D., Birenne, M.J.: Wrinkling transition in partially polymerized vesicles. Phys. Rev. Lett., 67, 923–926 (1991).CrossRefGoogle Scholar
  13. [MB91]
    Mutz, M., Bensimon, D.: Observation of toroidal vesicles. Phys. Rev. A, 43, 4525–4527 (1991).CrossRefGoogle Scholar
  14. [NOO93]
    Naito, H., Okuda, M., Ou-Yang, Z.-C.: Counterexample to some shape equations for axisymmetric vesicles. Phys. Rev. E, 48, 2304–2307 (1993).CrossRefGoogle Scholar
  15. [OH89]
    Ou-Yang, Z.-C., Helfrich, W.: Bending energy of vesicle membranes: general expressions for the first, second and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A, 39, 5280–5288 (1989).CrossRefGoogle Scholar
  16. [Pet85]
    Peterson, M.: An instability of the red blood shape. J. Appl. Phys., 57, 1739–1742 (1985).CrossRefGoogle Scholar
  17. [Poz03]
    Pozrikidis, C.: Shell Theory for Capsules and Cells. Modeling and Simulation of Capsules and Biological Cells. Chapman & Hall/CRC, Boca Raton, FL (2003), pp. 35–101.Google Scholar
  18. [SBL91]
    Seifert, U., Berndl, K., Lipowsky, R.: Shape transformations of vesicles: phase diagram for spontaneous-curvature and bilayer-coupling models. Phys. Rev. A, 44, 1182–1202 (1991).CrossRefGoogle Scholar
  19. [Sef66]
    Seifert, U.: Vesicles of toroidal topology. Phys. Rev. Lett., 66, 2404–2407 (1991).CrossRefGoogle Scholar
  20. [Spi79]
    Spivak, M.: A Comprehensive Introduction to Differential Geometry. Publish or Perish, Berkeley (1997).Google Scholar
  21. [Wil82]
    Willmore, T.J.: Total Curvature in Riemannian Geometry. Horwood, Chichester (1982).MATHGoogle Scholar
  22. [Zan96]
    Zanten, Z.H.V.: Characterization of vesicles and vesicular dispersions via scattering techniques. In: Vesicles. Marcel Dekker, New York (1996), pp. 240–294.Google Scholar
  23. [ZL93]
    Zheng, W., Liu, J.: Helfrich shape equation for axisymmetric vesicles as a first integral. Phys. Rev. E, 48, 2856–2860 (1993).CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • N.K. Vaidya
    • 1
  • H. Huang
    • 1
  • S. Takagi
    • 2
  1. 1.York UniversityTorontoCanada
  2. 2.University of TokyoJapan

Personalised recommendations