Integral Representation for the Solution of a Crack Problem Under Stretching Pressure in Plane Asymmetric Elasticity

  • E. Shmoylova
  • S. Potapenko
  • L. Rothenburg


Crack Length Boundary Element Method Classical Case Couple Stress Normal Traction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AlB93]
    Aliabadi, M.H., Brebbia, C.A.: Advances in Boundary Element Methods for Fracture Mechanics. Computational Mechanics Publ., Southampton, Boston; Elsevier, London-New York (1993).Google Scholar
  2. [AtL02]
    Atkinson, C., Leppington, F.G.: The effect of couple stresses on the tip of a crack. Internat. J. Solids Structures, 13, 1103–1122 (1977).MATHCrossRefMathSciNetGoogle Scholar
  3. [BJ01]
    Bouyge, F., Jasiuk, I., Ostoja-Starzewski, M.: A micromechanically based couple-stress model of an elastic two-phase composite. Internat. J. Solids Structures, 38, 1721–1735 (2001).MATHCrossRefGoogle Scholar
  4. [Br78]
    Brebbia, C.A.: The Boundary Element Method for Engineers. Pentech Press, London (1978).Google Scholar
  5. [CC00]
    Chudinovich, I., Constanda, C.: Variational and Potential Methods in the Theory of Bending of Plates with Transverse Shear Deformation. Chapman & Hall/CRC, Boca Raton-London-New York-Washington, DC (2000).MATHGoogle Scholar
  6. [Er66]
    Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech., 15, 909–923 (1966).MATHMathSciNetGoogle Scholar
  7. [GKW03]
    Gaul, L., Kögl, M., Wagner, M.: Boundary Element Methods for Engineers and Scientists. Springer, Berlin-Heidelberg-New York (2003).MATHGoogle Scholar
  8. [JS04]
    Jasiuk, I., Ostoja-Starzewski, M.: Modeling of bone at a single lamella level. Biomech. Model. Mechanobiology, 3, 67–74 (2004).CrossRefGoogle Scholar
  9. [Lak82]
    Lakes, R.: Dynamical study of couple stress effects in human compact bone. J. Biomedical Engng., 104, 6–11 (1982).CrossRefGoogle Scholar
  10. [Lak95]
    Lakes, R.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Muhlhaus, H-B. (ed.), Continuum Models for Materials with Microstructure. Wiley, New York (1995), pp.1–22.Google Scholar
  11. [LNB90]
    Lakes, R., Nakamura, S., Behiri, J., Bonfield, W.: Fracture mechanics of bone with short cracks. J. Biomech., 23, 967–975 (1990).CrossRefGoogle Scholar
  12. [MP02]
    Mühlhaus, H.-B., Pasternak, E.: Path independent integrals for Cosserat continua and application to crack problems. Internat. J. Fracture, 113, 21–26 (2002).CrossRefGoogle Scholar
  13. [NL88]
    Nakamura, S., Lakes, R.: Finite element analysis of stress concentration around a blunt crack in a Cosserat elastic solid. Comput. Methods Appl. Mech. Engng., 66, 257–266 (1988).MATHCrossRefGoogle Scholar
  14. [PL86]
    Park, H., Lakes, R.: Cosserat micromechanics of human bone: strain redistribution by a hydration sensitive constituent. J. Biomechanics, 19, 385–397 (1986).CrossRefGoogle Scholar
  15. [PSM04]
    Potapenko, S., Schiavone, P., Mioduchowski, A.: Generalized Fourier series solution of torsion of an elliptic beam with microstructure. Appl. Math. Lett., 17, 189–192 (2004).MATHCrossRefMathSciNetGoogle Scholar
  16. [Sch96]
    Schiavone, P.: Integral equation methods in plane asymmetric elasticity. J. Elasticity, 43, 31–43 (1996).MATHMathSciNetGoogle Scholar
  17. [SPR06]
    Shmoylova, E., Potapenko, S., Rothenburg, L.: Weak solutions of the interior boundary value problems of plane Cosserat elasticity. Z. Angew. Math. Phys., 57, 506–522 (2006).MATHCrossRefMathSciNetGoogle Scholar
  18. [SPRa]
    Shmoylova, E., Potapenko, S., Rothenburg, L.: Weak solutions of the exterior boundary value problems of plane Cosserat elasticity. J. Integral Equations Appl. (in press).Google Scholar
  19. [SPRb]
    Shmoylova, E., Potapenko, S., Rothenburg, L.: Stress distribution around a crack in plane micropolar elasticity. J. Elasticity (in press).Google Scholar
  20. [Sn69]
    Sneddon, I.: Crack Problems in the Classical Theory of Elasticity. Wiley, New York (1969).MATHGoogle Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • E. Shmoylova
    • 1
  • S. Potapenko
    • 2
  • L. Rothenburg
    • 2
  1. 1.Tufts UniversityMedfordUSA
  2. 2.University of WaterlooCanada

Personalised recommendations