Reciprocity in Elastomechanics: Development of Explicit Results for Mixed Boundary Value Problems

  • A.P.S. Selvadurai


Contact Problem Mixed Boundary Reciprocal Theorem Dual Integral Equation Rigid Punch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bet72]
    Betti, E.: Teoria dell’Elasticità, Nuovo Cimento Ser. II, VII, VIII (1872).Google Scholar
  2. [Bou85]
    Boussinesq, J.: Application des Potentiels à l’Étude de l’Equilibre et du Mouvement des Solides. Gauthier-Villars, Paris (1885).MATHGoogle Scholar
  3. [Har45]
    Harding, J.W., Sneddon, I.N.: The elastic stresses produced by the indentation of the plane surface of a semi-infinite solid by a rigid punch. Camb. Phil. Soc., 41, 16–26 (1945).MATHMathSciNetCrossRefGoogle Scholar
  4. [M60]
    Muki, R.: Asymmetric problems in the theory of elasticity for a semiinfinite solid and a thick plate. In: Sneddon, I.N., Hill, R. (eds.), Progress in Solid Mechanics, vol. 1. North-Holland, Amsterdam (1960), pp. 339–349.Google Scholar
  5. [Max64]
    Maxwell, J.C.: On the calculation of equilibrium and stiffness of frames. Phil. Mag., 27, 294–299 (1864).Google Scholar
  6. [N58]
    Noble, B.: Certain dual integral equations. J. Math. Phys., 37, 128–136 (1958).MathSciNetMATHGoogle Scholar
  7. [Sel78]
    Selvadurai, A.P.S.: The interaction between a rigid circular punch on an elastic halfspace and a Mindlin force. Mech. Res. Comm., 5, 57–64 (1978).MATHCrossRefMathSciNetGoogle Scholar
  8. [Sel79]
    Selvadurai, A.P.S.: The displacement of a rigid circular foundation anchored to an isotropic elastic halfspace. Geotechnique, 29, 195–202 (1979).CrossRefGoogle Scholar
  9. [Sel00]
    Selvadurai, A.P.S.: On the mathematical modelling of certain fundamental elastostatic contact problems in geomechanics. In: Zaman, M., Gioda, G., Booker, J.R. (eds.), Modelling in Geomechanics. Wiley, New York (2000).Google Scholar
  10. [Sel07]
    Selvadurai, A.P.S.: The analytical method in geomechanics. Appl. Mech. Reviews, 60, 87–106 (2007).CrossRefGoogle Scholar
  11. [Sh66]
    Shield, R.T., Anderson, C.A.: Some least work principles for elastic bodies. Z. Angew. Math. Phys., 17, 663–676 (1966).CrossRefGoogle Scholar
  12. [Sh67]
    Shield, R.T.: Load–displacement relations for elastic bodies. Z. Angew. Math. Phys., 18, 682–693 (1967).MATHCrossRefGoogle Scholar
  13. [Sn69]
    Sneddon, I.N., Lowengrub, M.: Crack Problems in the Classical Theory of Elasticity. Wiley, New York (1969).MATHGoogle Scholar
  14. [Sn75]
    Sneddon, I.N.: Application of Integral Transforms in the Theory of Elasticity. Springer, Wien (1975).MATHGoogle Scholar
  15. [Tr63]
    Truesdell, C.: The meaning of Betti’s reciprocal theorem. J. Research Nat. Bur. Standards, 67B, 85–86 (1963).MathSciNetGoogle Scholar
  16. [Z67]
    Zienkiewicz, O.C., Stagg, K.G.: Cable method of in-situ rock testing. Int. J. Rock Mech. Min. Sci., 4, 273–300 (1967).CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • A.P.S. Selvadurai
    • 1
  1. 1.McGill UniversityMontrealCanada

Personalised recommendations