Reciprocity in Elastomechanics: Development of Explicit Results for Mixed Boundary Value Problems

  • A.P.S. Selvadurai


Contact Problem Mixed Boundary Reciprocal Theorem Dual Integral Equation Rigid Punch 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bet72]
    Betti, E.: Teoria dell’Elasticità, Nuovo Cimento Ser. II, VII, VIII (1872).Google Scholar
  2. [Bou85]
    Boussinesq, J.: Application des Potentiels à l’Étude de l’Equilibre et du Mouvement des Solides. Gauthier-Villars, Paris (1885).MATHGoogle Scholar
  3. [Har45]
    Harding, J.W., Sneddon, I.N.: The elastic stresses produced by the indentation of the plane surface of a semi-infinite solid by a rigid punch. Camb. Phil. Soc., 41, 16–26 (1945).MATHMathSciNetCrossRefGoogle Scholar
  4. [M60]
    Muki, R.: Asymmetric problems in the theory of elasticity for a semiinfinite solid and a thick plate. In: Sneddon, I.N., Hill, R. (eds.), Progress in Solid Mechanics, vol. 1. North-Holland, Amsterdam (1960), pp. 339–349.Google Scholar
  5. [Max64]
    Maxwell, J.C.: On the calculation of equilibrium and stiffness of frames. Phil. Mag., 27, 294–299 (1864).Google Scholar
  6. [N58]
    Noble, B.: Certain dual integral equations. J. Math. Phys., 37, 128–136 (1958).MathSciNetMATHGoogle Scholar
  7. [Sel78]
    Selvadurai, A.P.S.: The interaction between a rigid circular punch on an elastic halfspace and a Mindlin force. Mech. Res. Comm., 5, 57–64 (1978).MATHCrossRefMathSciNetGoogle Scholar
  8. [Sel79]
    Selvadurai, A.P.S.: The displacement of a rigid circular foundation anchored to an isotropic elastic halfspace. Geotechnique, 29, 195–202 (1979).CrossRefGoogle Scholar
  9. [Sel00]
    Selvadurai, A.P.S.: On the mathematical modelling of certain fundamental elastostatic contact problems in geomechanics. In: Zaman, M., Gioda, G., Booker, J.R. (eds.), Modelling in Geomechanics. Wiley, New York (2000).Google Scholar
  10. [Sel07]
    Selvadurai, A.P.S.: The analytical method in geomechanics. Appl. Mech. Reviews, 60, 87–106 (2007).CrossRefGoogle Scholar
  11. [Sh66]
    Shield, R.T., Anderson, C.A.: Some least work principles for elastic bodies. Z. Angew. Math. Phys., 17, 663–676 (1966).CrossRefGoogle Scholar
  12. [Sh67]
    Shield, R.T.: Load–displacement relations for elastic bodies. Z. Angew. Math. Phys., 18, 682–693 (1967).MATHCrossRefGoogle Scholar
  13. [Sn69]
    Sneddon, I.N., Lowengrub, M.: Crack Problems in the Classical Theory of Elasticity. Wiley, New York (1969).MATHGoogle Scholar
  14. [Sn75]
    Sneddon, I.N.: Application of Integral Transforms in the Theory of Elasticity. Springer, Wien (1975).MATHGoogle Scholar
  15. [Tr63]
    Truesdell, C.: The meaning of Betti’s reciprocal theorem. J. Research Nat. Bur. Standards, 67B, 85–86 (1963).MathSciNetGoogle Scholar
  16. [Z67]
    Zienkiewicz, O.C., Stagg, K.G.: Cable method of in-situ rock testing. Int. J. Rock Mech. Min. Sci., 4, 273–300 (1967).CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • A.P.S. Selvadurai
    • 1
  1. 1.McGill UniversityMontrealCanada

Personalised recommendations