Advertisement

Solutions of the Atmospheric Advection–Diffusion Equation by the Laplace Transformation

  • D.M. Moreira
  • M.T. de Vilhena
  • T. Tirabassi
  • B.E.J. Bodmann

Keywords

Convective Boundary Layer Laplace Transformation Quadrature Point Stepwise Approximation Laplace Numerical Inversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ber86]
    Berkovicz, R.R., Olesen, H.R., Torp, U.: The Danish Gaussian air pollution model (OML). In: Proceedings 15th Internat. Tech. Meeting on Air Pollution Modeling and Its Applications V, Plenum, St. Louis, MO (1986).Google Scholar
  2. [Dea75]
    Deardoff, J.W., Willis, G.E.: A parameterization of diffusion into the mixed layer. J. Appl. Meteorol., 14, 1451–1458 (1975).CrossRefGoogle Scholar
  3. [Deg01]
    Degrazia, G.A., Moreira, D.M., Vilhena, M.T.: Derivation of an eddy diffusivity depending on source distance for vertically inhomogeneous turbulence in a Convective Boundary Layer. J. Appl. Meteorol., 40, 1233–1240 (2001).CrossRefGoogle Scholar
  4. [Gry87]
    Gryning, S.E., Holtslag, A.A.M., Irwin, J.S., Siversteen, B.: Applied dispersion modelling based on meteorologing scaling parameters. Atmos. Environ., 21, 79–89 (1987).CrossRefGoogle Scholar
  5. [Han89]
    Hanna, S.R., Paine, R.J.: Hibrid plume dispersion model (HPDM) development and evaluation, J. Appl. Meteorol., 28, 206–224 (1989).CrossRefGoogle Scholar
  6. [Kyt97]
    Kythe, P.K., Puri, P., Schferkotter, M.R.: Partial Differential Equations and Mathematics. CRC Press, Boca Raton, FL (1997).Google Scholar
  7. [Mor99]
    Moreira, D.M., Degrazia, G.A., Vilhena, M.T.: Dispersion from low sources in a convective boundary layer: an analytical model. Il Nuovo Cimento, 22C, 685–691 (1999).Google Scholar
  8. [Str66]
    Stroud, A.H., Secrest, D.: Gaussian Quadrature Formulas. Prentice Hall, Englewood Cliffs, NJ (1966).MATHGoogle Scholar
  9. [Tir03]
    Tirabassi, T.: Operational advanced air pollution modeling. Pure Appl. Geophys., 160, 5–16 (2003).CrossRefGoogle Scholar
  10. [Van03]
    van Dop, H., Verver, G.: Countergradient transport revisited. J. Atmos. Sci., 58, 2240–2247 (2001).CrossRefGoogle Scholar
  11. [Vil98]
    Vilhena, M.T., Rizza, U., Degrazia, G.A., Mangia, C., Moreira, D.M., Tirabassi, T.: An analytical air pollution model: development and evaluation. Control Atmos. Phys., 71, 315–320 (1998).Google Scholar
  12. [Zan90]
    Zanetti, P.: Air Pollution Modeling. Computational Mechanics Publications, Southampton (1990).Google Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • D.M. Moreira
    • 1
  • M.T. de Vilhena
    • 2
  • T. Tirabassi
    • 3
  • B.E.J. Bodmann
    • 2
  1. 1.Universidade Federal de PelotasBagéBrazil
  2. 2.Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Istituto di Scienze dell’Atmosfera e del ClimaItaly

Personalised recommendations