Skip to main content

Solutions of the Atmospheric Advection–Diffusion Equation by the Laplace Transformation

  • Chapter
Integral Methods in Science and Engineering
  • 1267 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berkovicz, R.R., Olesen, H.R., Torp, U.: The Danish Gaussian air pollution model (OML). In: Proceedings 15th Internat. Tech. Meeting on Air Pollution Modeling and Its Applications V, Plenum, St. Louis, MO (1986).

    Google Scholar 

  2. Deardoff, J.W., Willis, G.E.: A parameterization of diffusion into the mixed layer. J. Appl. Meteorol., 14, 1451–1458 (1975).

    Article  Google Scholar 

  3. Degrazia, G.A., Moreira, D.M., Vilhena, M.T.: Derivation of an eddy diffusivity depending on source distance for vertically inhomogeneous turbulence in a Convective Boundary Layer. J. Appl. Meteorol., 40, 1233–1240 (2001).

    Article  Google Scholar 

  4. Gryning, S.E., Holtslag, A.A.M., Irwin, J.S., Siversteen, B.: Applied dispersion modelling based on meteorologing scaling parameters. Atmos. Environ., 21, 79–89 (1987).

    Article  Google Scholar 

  5. Hanna, S.R., Paine, R.J.: Hibrid plume dispersion model (HPDM) development and evaluation, J. Appl. Meteorol., 28, 206–224 (1989).

    Article  Google Scholar 

  6. Kythe, P.K., Puri, P., Schferkotter, M.R.: Partial Differential Equations and Mathematics. CRC Press, Boca Raton, FL (1997).

    Google Scholar 

  7. Moreira, D.M., Degrazia, G.A., Vilhena, M.T.: Dispersion from low sources in a convective boundary layer: an analytical model. Il Nuovo Cimento, 22C, 685–691 (1999).

    Google Scholar 

  8. Stroud, A.H., Secrest, D.: Gaussian Quadrature Formulas. Prentice Hall, Englewood Cliffs, NJ (1966).

    MATH  Google Scholar 

  9. Tirabassi, T.: Operational advanced air pollution modeling. Pure Appl. Geophys., 160, 5–16 (2003).

    Article  Google Scholar 

  10. van Dop, H., Verver, G.: Countergradient transport revisited. J. Atmos. Sci., 58, 2240–2247 (2001).

    Article  Google Scholar 

  11. Vilhena, M.T., Rizza, U., Degrazia, G.A., Mangia, C., Moreira, D.M., Tirabassi, T.: An analytical air pollution model: development and evaluation. Control Atmos. Phys., 71, 315–320 (1998).

    Google Scholar 

  12. Zanetti, P.: Air Pollution Modeling. Computational Mechanics Publications, Southampton (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Boston

About this chapter

Cite this chapter

Moreira, D., Vilhena, M.d., Tirabassi, T., Bodmann, B. (2008). Solutions of the Atmospheric Advection–Diffusion Equation by the Laplace Transformation. In: Constanda, C., Potapenko, S. (eds) Integral Methods in Science and Engineering. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4671-4_20

Download citation

Publish with us

Policies and ethics