Solutions of the Atmospheric Advection–Diffusion Equation by the Laplace Transformation

  • D.M. Moreira
  • M.T. de Vilhena
  • T. Tirabassi
  • B.E.J. Bodmann


Convective Boundary Layer Laplace Transformation Quadrature Point Stepwise Approximation Laplace Numerical Inversion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ber86]
    Berkovicz, R.R., Olesen, H.R., Torp, U.: The Danish Gaussian air pollution model (OML). In: Proceedings 15th Internat. Tech. Meeting on Air Pollution Modeling and Its Applications V, Plenum, St. Louis, MO (1986).Google Scholar
  2. [Dea75]
    Deardoff, J.W., Willis, G.E.: A parameterization of diffusion into the mixed layer. J. Appl. Meteorol., 14, 1451–1458 (1975).CrossRefGoogle Scholar
  3. [Deg01]
    Degrazia, G.A., Moreira, D.M., Vilhena, M.T.: Derivation of an eddy diffusivity depending on source distance for vertically inhomogeneous turbulence in a Convective Boundary Layer. J. Appl. Meteorol., 40, 1233–1240 (2001).CrossRefGoogle Scholar
  4. [Gry87]
    Gryning, S.E., Holtslag, A.A.M., Irwin, J.S., Siversteen, B.: Applied dispersion modelling based on meteorologing scaling parameters. Atmos. Environ., 21, 79–89 (1987).CrossRefGoogle Scholar
  5. [Han89]
    Hanna, S.R., Paine, R.J.: Hibrid plume dispersion model (HPDM) development and evaluation, J. Appl. Meteorol., 28, 206–224 (1989).CrossRefGoogle Scholar
  6. [Kyt97]
    Kythe, P.K., Puri, P., Schferkotter, M.R.: Partial Differential Equations and Mathematics. CRC Press, Boca Raton, FL (1997).Google Scholar
  7. [Mor99]
    Moreira, D.M., Degrazia, G.A., Vilhena, M.T.: Dispersion from low sources in a convective boundary layer: an analytical model. Il Nuovo Cimento, 22C, 685–691 (1999).Google Scholar
  8. [Str66]
    Stroud, A.H., Secrest, D.: Gaussian Quadrature Formulas. Prentice Hall, Englewood Cliffs, NJ (1966).MATHGoogle Scholar
  9. [Tir03]
    Tirabassi, T.: Operational advanced air pollution modeling. Pure Appl. Geophys., 160, 5–16 (2003).CrossRefGoogle Scholar
  10. [Van03]
    van Dop, H., Verver, G.: Countergradient transport revisited. J. Atmos. Sci., 58, 2240–2247 (2001).CrossRefGoogle Scholar
  11. [Vil98]
    Vilhena, M.T., Rizza, U., Degrazia, G.A., Mangia, C., Moreira, D.M., Tirabassi, T.: An analytical air pollution model: development and evaluation. Control Atmos. Phys., 71, 315–320 (1998).Google Scholar
  12. [Zan90]
    Zanetti, P.: Air Pollution Modeling. Computational Mechanics Publications, Southampton (1990).Google Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • D.M. Moreira
    • 1
  • M.T. de Vilhena
    • 2
  • T. Tirabassi
    • 3
  • B.E.J. Bodmann
    • 2
  1. 1.Universidade Federal de PelotasBagéBrazil
  2. 2.Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Istituto di Scienze dell’Atmosfera e del ClimaItaly

Personalised recommendations