Boundary Integral Solution of the Two-Dimensional Fractional Diffusion Equation

  • J. Kemppainen
  • K. Ruotsalainen


Fundamental Solution Boundary Integral Equation Mapping Property Principal Symbol Boundary Integral Equation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AS71]
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U.S. Government Printing Office, Washington, DC (1971).Google Scholar
  2. [Cos92]
    Costabel, M.: Boundary integral operators for the heat equation. Integral Equations Oper. Theory, 13, 498–552 (1992).CrossRefMathSciNetGoogle Scholar
  3. [Cos04]
    Costabel, M.: Time-dependent problems with the boundary integral equation method. In: Stein E., Borst R., Hughes, T.J.R. (eds.), Encyclopedia of Computational Mechanics. Wiley, New York (2004).Google Scholar
  4. [Cos01]
    Costabel, M., Saranen, J., Parabolic boundary integral operators, symbolic representations and basic properties. Integral Equations Oper. Theory, 40, 185–211 (2001).MATHCrossRefMathSciNetGoogle Scholar
  5. [GR96]
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic Press, New York (1996).MATHGoogle Scholar
  6. [HS89]
    Hsiao, G.C., Saranen J.: Coercivity of the single layer heat operator. Report 89-2, Center for Mathematics and Waves, University of Delaware, Newark, DE (1989).Google Scholar
  7. [KR]
    Kemppainen, J., Ruotsalainen, K.: Boundary integral operators for twodimensional fractional diffusion equations (in press).Google Scholar
  8. [KS04]
    Kilbas, A.A., Saigo, M.: H-transforms: Theory and Applications. CRC Press, Boca Raton, FL (2004).MATHGoogle Scholar
  9. [LM721]
    Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, Berlin (1972).MATHGoogle Scholar
  10. [LM722]
    Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. II. Springer, Berlin (1972).MATHGoogle Scholar
  11. [Obe73]
    Oberhettinger, F.: Fourier Expansions. Academic Press, New York- London (1973).MATHGoogle Scholar
  12. [PBM90]
    Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series, vol. 3. More Special Functions. Overseas Publishers Association, Amsterdam (1990).Google Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • J. Kemppainen
    • 1
  • K. Ruotsalainen
    • 1
  1. 1.University of OuluFinland

Personalised recommendations