Fast Numerical Integration Method Using Taylor Series

  • H. Hirayama


Test Problem Taylor Series Arithmetic Operation Quadrature Method Numerical Integration Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ES90]
    Ellis, M.A., Stroustrup, B.: The Annotated C++ Reference Manual. Addison-Wesley, New York (1990).Google Scholar
  2. [EU96]
    Engeln-Müllges, G., Uhlig, F.: Numerical Algorithms with C. Springer, Berlin-Heidelberg-New York (1996).MATHGoogle Scholar
  3. [Hen74]
    Henrici, P.: Applied Computational Complex Analysis, vol. 1. Wiley, New York (1974).MATHGoogle Scholar
  4. [HH03]
    Hibino, S., Hasegawa, T., Ninomiya, I., Hosoda, Y., Sato, Y.: A doubly adaptive quadrature method based on the combination of the Ninomiya and the FLR schemes. Trans. IPSJ, 44, 2419–2427 (2003) (Japanese).MathSciNetGoogle Scholar
  5. [Hir02]
    Hirayama, H.: Numerical method for solving ordinary differential equation by Picard’s method. In: Schiavone, P., Constanda, C., Mioduchowski, A. (eds.), Integral Methods in Science and Engineering. Birkhäuser, Boston (2002) pp. 111–116.Google Scholar
  6. [Ral81]
    Rall, L.B.: Automatic Differentiation-Technique and Applications. Springer, Berlin-Heidelberg-New York (1981).Google Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • H. Hirayama
    • 1
  1. 1.Kanagawa Institute of TechnologyJapan

Personalised recommendations