Fast Numerical Integration Method Using Taylor Series

  • H. Hirayama


Test Problem Taylor Series Arithmetic Operation Quadrature Method Numerical Integration Method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ES90]
    Ellis, M.A., Stroustrup, B.: The Annotated C++ Reference Manual. Addison-Wesley, New York (1990).Google Scholar
  2. [EU96]
    Engeln-Müllges, G., Uhlig, F.: Numerical Algorithms with C. Springer, Berlin-Heidelberg-New York (1996).MATHGoogle Scholar
  3. [Hen74]
    Henrici, P.: Applied Computational Complex Analysis, vol. 1. Wiley, New York (1974).MATHGoogle Scholar
  4. [HH03]
    Hibino, S., Hasegawa, T., Ninomiya, I., Hosoda, Y., Sato, Y.: A doubly adaptive quadrature method based on the combination of the Ninomiya and the FLR schemes. Trans. IPSJ, 44, 2419–2427 (2003) (Japanese).MathSciNetGoogle Scholar
  5. [Hir02]
    Hirayama, H.: Numerical method for solving ordinary differential equation by Picard’s method. In: Schiavone, P., Constanda, C., Mioduchowski, A. (eds.), Integral Methods in Science and Engineering. Birkhäuser, Boston (2002) pp. 111–116.Google Scholar
  6. [Ral81]
    Rall, L.B.: Automatic Differentiation-Technique and Applications. Springer, Berlin-Heidelberg-New York (1981).Google Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • H. Hirayama
    • 1
  1. 1.Kanagawa Institute of TechnologyJapan

Personalised recommendations