Advertisement

A System Iterative Method for Solving First-Kind, Degraded Identity Operator Equations

  • J. Hilgers
  • B. Bertram
  • W. Reynolds

Keywords

Gaussian Kernel Point Spread Function True Solution Tikhonov Regularization Feature Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Gro77]
    Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman, London (1977).Google Scholar
  2. [HBR00]
    Hilgers, J.W., Bertram, B.S., Reynolds, W.R.: Use of cross-referencing for solving the parameter choice problem in generalized CLS. In: Schiavone, P., Constanda, C., Midouchowski, A. (eds.), Integral Methods in Scienc and Engineering. Birkhäuser, Boston (2002), pp. 105–110.Google Scholar
  3. [HB04]
    Hilgers, J.W., Bertram, B.S.: Comparing different types of approximators for choosing the parameters in the regularization of ill-posed problems. Computers Math. Appl., 48, 1779–1790 (2004).MATHCrossRefMathSciNetGoogle Scholar
  4. [Mor84]
    Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer, Berlin-Heidelberg-New York (1984).Google Scholar
  5. [Tik63]
    Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl. (1963), pp. 1035–1038.Google Scholar
  6. [TA77]
    Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Winston, Washington, DC (1977).MATHGoogle Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • J. Hilgers
    • 1
    • 2
  • B. Bertram
    • 1
  • W. Reynolds
    • 2
  1. 1.Michigan Technological UniversityHoughtonUSA
  2. 2.Signature Research IncCalumetUSA

Personalised recommendations