Convexity Conditions and Uniqueness and Regularity of Equilibria in Nonlinear Elasticity

  • S.M. Haidar


Equilibrium Equation Equilibrium Solution Nonlinear Elasticity Convexity Condition Strong Ellipticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ada75]
    Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975).MATHGoogle Scholar
  2. [AB78]
    Antman, S.S., Brezis, H.: The existence of orientation-preserving deformations in nonlinear elasticity. In: Knops, R.J. (ed.), Nonlinear Analysis and Mechanics, vol. II. Pitman, London (1978).Google Scholar
  3. [AT80]
    Aubert, G., Tahroui, R.: Sur la faible fermeture des certains ensembles de constraintes en élasticité nonlinéaire plane. C.R. Acad. Sci. Paris Sér. I, 290, 537–540 (1980).MATHGoogle Scholar
  4. [Bal77a]
    Ball, J.M.: Constitutive inequalities and existence theorems in nonlinear elastostatics. In: Knops, R.J. (ed.), Nonlinear Analysis and Mechanics, vol.I. Pitman, London, 187–241 (1977).Google Scholar
  5. [Bal77b]
    Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal., 63, 337–403 (1977).MATHCrossRefGoogle Scholar
  6. [Bal82]
    Ball, J.M.: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Phil. Trans. Roy. Soc. London, 306, 557–611 (1982).MATHCrossRefGoogle Scholar
  7. [BM84]
    Ball, J.M., Murat, F.: W1,P -quasiconvexity and variational problems for multiple integrals. J. Functional Anal., 58, 225–253 (1984).MATHCrossRefMathSciNetGoogle Scholar
  8. [BM85]
    Ball, J.M., Mizel, J.V.: One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation. Arch. Rational Mech. Anal., 90, 325–388 (1985).MATHMathSciNetGoogle Scholar
  9. [Eri83]
    Ericksen, J.L.: Ill-posed problems in thermoelasticity theory. In: Ball, J.M. (ed.), Systems of Nonlinear Partial Differential Equations, Reidel, Dordrecht (1983).Google Scholar
  10. [Hai00]
    Haidar, S.M.: Existence and regularity of weak solutions to the displacement boundary value problem of nonlinear elastostatics. In: Bertram, B., Constanda, C., Struthers, A. (eds.), Integral Methods in Science and Engineering. Chapman & Hall/CRC, Boca Raton, FL (2000), pp. 161–166.Google Scholar
  11. [Hai89]
    Haidar, S.M.: The Lavrentiev phenomenon in nonlinear elasticity. Ph.D. Thesis, Department of Mathematics, Carnegie-Mellon University, Pittsburgh, PA (1989).Google Scholar
  12. [Hil57]
    Hill, R.: On uniqueness and stability in the theory of finite elastic strains. J. Mech. Phys. Solids, 5, 229–241 (1957).MATHCrossRefMathSciNetGoogle Scholar
  13. [Joh72]
    John, F.: Uniqueness of non-linear elastic equilibrium for prescribed boundary displacements and sufficiently small strains. Comm. Pure Appl. Math., 25, 617–634 (1972).MATHCrossRefMathSciNetGoogle Scholar
  14. [KS84]
    Knops, R.J., Stuart, C.A.: Quasi-convexity and uniqueness of equilibrium solutions in nonlinear elasticity. Arch. Rational Mech. Anal., 86, 223–249 (1984).CrossRefMathSciNetGoogle Scholar
  15. [Mor52]
    Morrey, C.B.: Quasi-convexity and the lower semi-continuity of multiple integrals. Pacific J. Math., 2, 25–53 (1952).MATHMathSciNetGoogle Scholar
  16. [Mor66]
    Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966).MATHGoogle Scholar
  17. [RE55]
    Rivlin, R.S., Ericksen, J.L.: Stress–deformation relations for isotropic materials. J. Rational Mech. Anal., 4, 323–425 (1955).MathSciNetGoogle Scholar
  18. [TN65]
    Truesdell, C., Noll, W.: The nonlinear field theories of mechanics. In: Flugge, S. (ed.), Handbuch der Physik, vol. III/3. Springer, Berlin (1965).Google Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • S.M. Haidar
    • 1
  1. 1.Grand Valley State UniversityAllendaleUSA

Personalised recommendations