Dynamic Response of a Poroelastic Half-Space to Harmonic Line Tractions

  • V. Gerasik
  • M. Stastna


Porous Medium Bulk Modulus Rayleigh Wave Source Frequency Berea Sandstone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bio56]
    Biot, M.A.: The theory of propagation of elastic waves in a fluid-saturated porous solid. J. Acous. Soc. Amer., 28, 168–191 (1956).CrossRefMathSciNetGoogle Scholar
  2. [Bou87]
    Bourbie, T., Coussy, O., Zinzner, B.: Acoustics of Porous Media. Gulf Publishing Company, Paris (1987).Google Scholar
  3. [CSD06]
    Chao, G., Smeulders, D.M.J., van Dongen, M.E.H.: Dispersive surface waves along partially saturated porous media. J. Acous. Soc. Amer., 119, 1348–1355 (2006).CrossRefGoogle Scholar
  4. [deB05]
    de Boer, R.: Trends in Continuum Mechanics of Porous Media. Springer, Dordrecht (2005).MATHGoogle Scholar
  5. [DR62]
    Deresiewicz, H., Rice, J.T.: The effect of the boundaries on wave propagation in a liquid filed porous solid. Bull. Seism. Soc. Amer., 52, 627–638 (1962).Google Scholar
  6. [DD84]
    Dey, S., De, R.K.: Stresses in fluid-saturated porous half-space due to the normal and tangential loadings. Indian J. Pure Appl. Math., 15, 1375–1397 (1984).MATHGoogle Scholar
  7. [FJ83]
    Feng, S., Johnson, D.L.: High-frequency acoustic properties of a fluid/porous solid interface. II. The 2D reflection Green’s function. J. Acous. Soc. Amer., 74, 915–924, (1983).MATHCrossRefGoogle Scholar
  8. [HC86]
    Halpern, M., Christiano, P.: Response of poroelastic halfspace to steadystate harmonic surface tractions. Internat. J. Numer. Anal. Geomech., 6, 609–632 (1986).CrossRefGoogle Scholar
  9. [Lam04]
    Lamb, H.: On the propagation of tremors over the surface of an elastic solid. Phil. Trans. Roy. Soc. London, A203, 1–42 (1904).Google Scholar
  10. [MLC05]
    Mesgouez, A., Lefeuve-Mesgouez, G., Chambarel, A.: Transient mechanical wave propagation in semi-infinite porous media using a finite element approach. Soil Dynamics Earth Engng., 25, 421–430 (2005).CrossRefGoogle Scholar
  11. [Mol02]
    Molotkov, L.A.: Sources acting on the free boundary of a porous Biot medium and reflection on this boundary. J. Math. Sci., 5, 3750–3762 (2002).CrossRefMathSciNetGoogle Scholar
  12. [Pau76]
    Paul, S.: On the displacements produced in a porous elastic half-space by an impulsive line load (no dissipative case). Pure Appl. Geophys., 4, 605–614 (1976).CrossRefGoogle Scholar
  13. [Phi88]
    Philippacoupoulos, A.J.: Lamb’s problem for fluid saturated porous media. Bull. Seism. Soc. Amer., 78, 908–923 (1988).Google Scholar
  14. [STS90]
    Seimov, V.M., Trofimchuk, A.N., Savitsky, O.A.: Oscillations and Waves in Layered Media. Naukova Dumka, Kiev (1990) (Russian).Google Scholar
  15. [VTZ95]
    Valiappan, S., Tabatabaie, J., Zhao, C.: Analytical solution for twodimensional dynamic consolidation in frequency domain. Internat. J. Numer. Anal. Geomech., 19, 663–682 (1995).CrossRefGoogle Scholar
  16. [Wil96]
    Wilmanski, K.: Porous media at finite strains. The new model with the balance equation for porosity. Arch. Mech., 4, 591–628 (1996).Google Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • V. Gerasik
    • 1
  • M. Stastna
    • 1
  1. 1.University of WaterlooCanada

Personalised recommendations