Advertisement

Dirac Operator with Coulomb Field

  • D. M. Gitman
  • I. V. Tyutin
  • B. L. Voronov
Chapter
Part of the Progress in Mathematical Physics book series (PMP, volume 62)

Abstract

We consider a Dirac particle moving in the Coulomb field of a point charge Ze. We define the self-adjoint Dirac Hamiltonian with the Coulomb field for any real Z and solve the corresponding spectral problem. From a mathematical standpoint, the definition of the Dirac Hamiltonian as a self-adjoint operator for arbitrary Z presents no problem; in particular, the well-known “Z = 137 catastrophe” does not arise. A specific feature of the overcritical charges (Z > 137) is a nonuniqueness of the self-adjoint Dirac Hamiltonian, but this nonuniqueness is characteristic even for charges Z ≥ 119.

References

  1. 1.
    Abramowitz, M., Stegun, I. (eds.): Handbook of Mathematical Functions. National Bureau of Standards, New York (1964)zbMATHGoogle Scholar
  2. 8.
    Akhiezer, A.I., Berestetskiǐ, V.B.: Quantum Electrodynamics. Interscience Publishers, New York (1965)Google Scholar
  3. 9.
    Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Pitman, Boston (1981)zbMATHGoogle Scholar
  4. 13.
    Bagrov, V.G., Gitman, D.M.: Exact Solutions of Relativistic Wave Equations, Kluwer Acad. Publish., Dordrecht, Boston, London (1990)zbMATHGoogle Scholar
  5. 20.
    Bateman, H., Erdélyi, A.: Higher Transcendental Functions, vol. 1. McGraw-Hill, New York (1953)Google Scholar
  6. 28.
    Bethe, H.A., Salpeter, E.E.: Quantum Mechanics of One- and Two-Electron Systems. Encyclopedia of Physics, vol. XXXV/1. Springer, Berlin (1957)Google Scholar
  7. 29.
    Billing, G.D., Adhikari, S.: The time-dependent discrete variable representation method in molecular dynamics. Chem. Phys. Lett. 321(3–4) 197–204 (2000)CrossRefGoogle Scholar
  8. 45.
    Dirac, P.A.M.: The Quantum Theory of the Electron. Proc. Roy. Soc. Lond., A 117, 610–624 (1928); The Quantum Theory of the Electron. Part II, Proc. Roy. Soc. Lond., A 118, 351–361 (1928); Darwin, C.G.: The Wave Equation of the Electron. Proc. Roy. Soc. Lond., A 118, 654–680 (1928); Gordon, W.: Die Energieniveaus des Wasserstoffatoms nach der Dirackschen Quanten Theorie des Electrons. Zs. Phys. 48, 11–15 (1928); Gordon, E.U., Shortley, G.H.: The Theory of Atomic Spectra. Cambridge University Press, Cambridge (1935)Google Scholar
  9. 60.
    Fradkin, E.S., Gitman, D.M., Shvartsman, Sh.M.: Quantum Electrodynamics with Unstable Vacuum. Springer, Berlin (1991)Google Scholar
  10. 62.
    Furry, W.H.: On bound states and scattering in positron theory. Phys. Rev. 81, 115–124 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 65.
    Gavrilov, S.P., Gitman, D.M.: Quantization of point-like particles and consisitent relativistic quantum mechanics. Int. J. Mod. Phys. A 15, 4499–4538 (2000)MathSciNetzbMATHGoogle Scholar
  12. 81.
    Gradshtein, I.S., Ryzhik, I.W.: Table of Integrals, Series, and Products. Academic Press, New York (1994)Google Scholar
  13. 82.
    Greiner, W., Müller, B., Rafelski, J.: Quantum Electrodynamics of Strong Fields. Springer, Berlin (1985)Google Scholar
  14. 116.
    Naimark, M.A.: Linear differential operators. Nauka, Moskva (1959) (in Russian). F. Ungar Pub. Co. New York (1967)Google Scholar
  15. 119.
    Nikishov, A.I.: The role of connection between spin and statistics in QED with pair creating external field. In: Problems in Theoretical Physics. Collection in commemoration of I.E. Tamm, pp. 299–305. Nauka, Moscow (1972); Problems of Intensive External Fields in Quantum Electrodynamics. In: Quantum Electrodynamics of Phenomena in Intense Fields, Proc. P.N. Lebedev Phys. Inst., 111, pp. 153–271. Nauka, Moscow (1979); Bagrov, V.G., Gitman, D.M., Shvartsman, Sh.M.: Concerning the production of electron–positron pairs from vacuum. Sov. Phys. JETP 41, 191–194 (1975)Google Scholar
  16. 122.
    Pomeranchuk I., Smorodinsky, Ya.: On energy levels in systems with Z > 137. J. Phys. (USSR) 9, 97–100 (1945); Gershtein S.S., Zel’dovich, Ya.B.: Positron production during the mutual approach of heavy nuclei and the polarization of the vacuum. Sov. Phys. JETP 30, 358–361 (1970)Google Scholar
  17. 125.
    Plesner, A.I.: Spectral Theory of Linear Operators. Nauka, Moscow (1965)Google Scholar
  18. 133.
    Rose, M.E.: Relativistic Electron Theory. Wiley, New York (1961)zbMATHGoogle Scholar
  19. 139.
    Schweber, S.: An Introduction to Relativistic Quantum Field Theory. Harper & Row, New York (1961)Google Scholar
  20. 146.
    Thaller, B.: The Dirac Equation, Texts and Monographs in Physics. Springer, Berlin (1992)Google Scholar
  21. 155.
    Voronov, B.L., Gitman, D.M., Tyutin, I.V.: The Dirac Hamiltonian with a superstrong Coulomb field. Theor. Math. Phys. 150(1) 34–72 (2007);D.M. Gitman, A.D. Levin, I.V. Tyutin, B.L. Voronov, Electronic Structure of Superheavy Atoms. Revisited, arXiv:1112.2648, quant-ph (2012)Google Scholar
  22. 166.
    Zel’dovich, Ya. B., Popov, V.S.: Electronic Structure of Superheavy Atoms. Sov. Phys. Uspekhi 14, 673–694 (1972)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • D. M. Gitman
    • 1
  • I. V. Tyutin
    • 2
  • B. L. Voronov
    • 2
  1. 1.Instituto de FísicaUniversidade de São PauloSão PauloBrasil
  2. 2.Department of Theoretical PhysicsP.N. Lebedev Physical InstituteMoscowRussia

Personalised recommendations