Advertisement

Spectral Analysis of Self-adjoint Operators

  • D. M. Gitman
  • I. V. Tyutin
  • B. L. Voronov
Chapter
Part of the Progress in Mathematical Physics book series (PMP, volume 62)

Abstract

We present the basics of the general spectral theory of self-adjoint operators and its application to the spectral analysis of self-adjoint ordinary differential operators. In finding spectrum and inversion formulas (eigenfunction expansion), we follow the Krein method of guiding functionals.

References

  1. 1.
    Abramowitz, M., Stegun, I. (eds.): Handbook of Mathematical Functions. National Bureau of Standards, New York (1964)zbMATHGoogle Scholar
  2. 2.
    Adami, R., Teta, A.: On the Aharonov–Bohm effect. Lett. Math. Phys. 43, 43–54 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 9.
    Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Pitman, Boston (1981)zbMATHGoogle Scholar
  4. 24.
    Berezansky, Yu.M.: Eigenfunction Expansions Associated with Self-adjoint Operators. Naukova Dumka, Kiev (1965)Google Scholar
  5. 27.
    Berezin, F.A., Shubin, M.A.: Schrödinger Equation. Kluwer, New York (1991)zbMATHCrossRefGoogle Scholar
  6. 43.
    Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators—with Applications to Quantum Mechanics and Global Geometry. Springer, Berlin (1987)Google Scholar
  7. 70.
    Gelfand, I.M., Kostyuchenko, A.G.: Eigenfunction expansions for differential and other operators. Dokl. Akad. Nauk SSSR 103(3) 349–352 (1955)MathSciNetGoogle Scholar
  8. 71.
    Gelfand, I.M., Shilov, G.E.: Some problems of the theory of differential equations. Generalized functions, part 3. Fizmatgiz, Moscow (1958)Google Scholar
  9. 92.
    Hislop, P.D., Sigal, I.M.: Introduction to Spectral Theory: With Applications to Schrödinger Operators. Appl. Math. Sci. Springer (1995)Google Scholar
  10. 95.
    Jörgens, K., Weidmann, J.: Spectral Properties of Hamiltonian Operators. Lecture Notes in Mathematics. Springer, Berlin (1973)zbMATHGoogle Scholar
  11. 97.
    Kolmogorov, A.N., Fomin, S.V.: Elements of Function Theory and Functional Analysis. Nauka, Moskva (1976)Google Scholar
  12. 101.
    Krein, M.T.: A general method for decomposition of positively defined kernels into elementary products. Dokl. Akad. Nauk SSSR 53, 3–6 (1946) (in Russian); On Hermitian operators with guiding functionals. Zbirnik Prazc’ Institutu Matematiki, AN URSR No.10 83–105 (1948) (in Ukranian)Google Scholar
  13. 108.
    Levitan, B.M.: Eigenfunction Expansions Assosiated with Second-order Differential Equations. Gostechizdat, Moscow (1950) (in Russian)Google Scholar
  14. 116.
    Naimark, M.A.: Linear differential operators. Nauka, Moskva (1959) (in Russian). F. Ungar Pub. Co. New York (1967)Google Scholar
  15. 129.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. II. Harmonic Analysis. Self-adjointness. Academic Press, New York (1975)Google Scholar
  16. 141.
    Shilov, G.E., Gurevich, B.L.: Integral, measure, and derivative. Nauka, Moscow (1967)Google Scholar
  17. 145.
    Teschl, G.: Mathematical Methods in Quantum Mechanics: With Applications to Schrödinger Operators. Graduate Studies in Mathematics, 99. American Mathematical Society (2009)Google Scholar
  18. 148.
    Titchmarsh, E.C.: Eigenfunction Expansions Assosiated with Second-order Differential Equations. Clarendon Press, Oxford (1946)Google Scholar
  19. 149.
    Titchmarsh, E.C.: Eigenfunction Expansions Assosiated with Second-order Differential Equations. Part II. Clarendon Press, Oxford (1958)Google Scholar
  20. 162.
    Weyl, H.: Über Gewöhnliche differentialgleichungen mit singularitäten und zugehörigen entwicklungen willkürlicher funktionen. Math. Annal. 68, 220–269 (1910)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • D. M. Gitman
    • 1
  • I. V. Tyutin
    • 2
  • B. L. Voronov
    • 2
  1. 1.Instituto de FísicaUniversidade de São PauloSão PauloBrasil
  2. 2.Department of Theoretical PhysicsP.N. Lebedev Physical InstituteMoscowRussia

Personalised recommendations