Linear Operators in Hilbert Spaces

  • D. M. Gitman
  • I. V. Tyutin
  • B. L. Voronov
Part of the Progress in Mathematical Physics book series (PMP, volume 62)


A solution of the problems raised in Introduction requires appealing to some nontrivial items of functional analysis concerning the theory of linear operators in Hilbert spaces, especially of unbounded symmetric and self-adjoint operators. We remind the reader of basic notions and facts from the theory of Hilbert spaces and of linear operators in such spaces which are relevant to the subject of the present book.


  1. 9.
    Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Pitman, Boston (1981)Google Scholar
  2. 87.
    Halmos, P.R.: The Hilbert space problem book. D. van Nostrand Co., Inc. Toronto, London (1967)Google Scholar
  3. 88.
    Halperin, I.: Introduction to the Theory of Distributions. University of Toronto Press, Toronto (1952) (Based on the lectures given by Laurent Schwartz)Google Scholar
  4. 116.
    Naimark, M.A.: Linear differential operators. Nauka, Moskva (1959) (in Russian). F. Ungar Pub. Co. New York (1967)Google Scholar
  5. 125.
    Plesner, A.I.: Spectral Theory of Linear Operators. Nauka, Moscow (1965)Google Scholar
  6. 128.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. I. Functional Analysis. Academic Press, New York (1980)Google Scholar
  7. 154.
    von Neumann, J.: Functional operators. The Geometry of Orthogonal Spaces, vol. 2. Princeton University Press, Princeton (1950)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • D. M. Gitman
    • 1
  • I. V. Tyutin
    • 2
  • B. L. Voronov
    • 2
  1. 1.Instituto de FísicaUniversidade de São PauloSão PauloBrasil
  2. 2.Department of Theoretical PhysicsP.N. Lebedev Physical InstituteMoscowRussia

Personalised recommendations