Skip to main content

Part of the book series: Progress in Mathematical Physics ((PMP,volume 62))

Abstract

We call attention to the fact that quantization includes the problem of a correct definition of quantum-mechanical observables like Hamiltonian, momentum, etc. as self-adjoint operators in an appropriate Hilbert space. This problem is nontrivial for systems on nontrivial manifolds or/and with singular interactions. A naïve treatment based on the experience in finite-dimensional algebra or even infinite-dimensional algebra with bounded operators can result in paradoxes and incorrect results. A set of such paradoxes is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The exceptions such as [27, 57, 83, 84, 128, 144, 147, 153] are mainly intended for mathematically minded physicists and mathematicians.

  2. 2.

    For unbounded operators, there is a crucial difference between the notions of symmetric (Hermitian) and s.a. operators; for bounded operators, these notions actually coincide.

  3. 3.

    S.a. according to Lagrange in mathematical terminology; see Chap. 4.

  4. 4.

    Of course, a flat infinite space is also an idealization, as is any infinity.

  5. 5.

    For a mathematician, quantization is a quantum deformation of classical structures; the deformation parameter is the Planck constant .

  6. 6.

    The bar \(\overline {-}\) over an expression denotes complex conjugation.

  7. 7.

    Numerous papers have been devoted to the study of various rules of assigning operators to classical quantities. A substantial contribution to a resolution of this problem is due to Berezin [25].

  8. 8.

    It is rather a differential operation than a differential operator; see Chap. 4. A rigorous definition of the differentiation operator \(\hat{{d}}_{x}\) is given in the end of Sect. 2.3.4.

References

  1. le Bellac, M.: Quantum Physics. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  2. Berezin, F.A.: The Method of Second Quantization. Academic Press, New York (1966)

    MATH  Google Scholar 

  3. Berezin, F.A., Faddeev, L.D.: A remark on Schrödinger’s equation with a singular potential. Sov. Math. Dokl. 2, 372–375 (1961)

    MATH  Google Scholar 

  4. Berezin, F.A., Shubin, M.A.: Schrödinger Equation. Kluwer, New York (1991)

    Book  MATH  Google Scholar 

  5. Bonneau, G., Faraut, J., Valent, G.: Self-adjoint extensions of operators and the teaching of quantum mechanics. Am. J. Phys. 69, 322–331 (2001)

    Article  Google Scholar 

  6. Bohm, D.: Quantum Theory. Prentice-Hall, Englewood Cliffs, NJ (1951)

    Google Scholar 

  7. Capri, A.: Nonrelativistic Quantum Mechanics. World Scientific Publishers, Singapore (2002)

    Google Scholar 

  8. Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics. Wiley, New York (1977)

    Google Scholar 

  9. Davydov, A.S.: Quantum Mechanics, 2nd edn. Pergamon Press, Oxford/New York (1976)

    Google Scholar 

  10. Dirac, P.A.M.: The Principles of Quantum Mechanics. Clarendon Press, Oxford (1958)

    MATH  Google Scholar 

  11. Dirac, P.A.M.: Lectures on Quantum Mechanics. Belfer Graduate School of Science, Yeshiva University, New York (1964)

    Google Scholar 

  12. Faddeev, L.D., Yakubovsky, O.A.: Lectures on Qunatum Mechanics. Leningrad State University Press, Leningrad (1980)

    Google Scholar 

  13. Galindo, A., Pascual, P.: Quantum Mechanics, vols. 1 and 2. Springer (1990, 1991)

    Google Scholar 

  14. Gasiorowicz, S.: Quantum Physics. Wiley, New York (1974)

    Google Scholar 

  15. Gieres, F.: Mathematical surprises and Dirac’s formalism in quantum mechanics. Rep. Prog. Phys. 63, 1893–1931 (2000)

    Article  Google Scholar 

  16. Gitman, D.M., Tyutin, I.V.: Quantization of Fields with Constraints. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  17. Gustafson, S.J., Sigal, I.M.: Mathematical Concepts of Quantum Mechanics. Universitext. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  18. Haag, R.: Local Quantum Physics. Springer, Berlin (1996)

    MATH  Google Scholar 

  19. Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

  20. Konishi, K., Paffuti, G.: Quantum Mechanics: A New Introduction. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  21. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-Relativistic Theory. Pergamon Press, Oxford (1977)

    Google Scholar 

  22. Liboff, R.L.: Introduction to Quantum Mechanics. Addison-Wesley, New York (1994)

    Google Scholar 

  23. Messiah, A.: Quantum Mechanics. Interscience, New York (1961)

    Google Scholar 

  24. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. I. Functional Analysis. Academic Press, New York (1980)

    Google Scholar 

  25. Sakurai, J.J.: Modern Quantum Mechanics. Addison-Wesley, New York (1994)

    Google Scholar 

  26. Schiff, L.I.: Quantum Mechanics. McGraw–Hill, New York (1955)

    Google Scholar 

  27. Takhtajan, L.A.: Quantum Mechanics for Mathematicians. Graduate Studies in Mathematics, 95. American Mathematical Society (2008)

    Google Scholar 

  28. Thirring, W.: Quantum Mathematical Physics – Atoms, Molecules and Large Systems. Springer, Berlin (2002)

    Google Scholar 

  29. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)

    MATH  Google Scholar 

  30. Voronov, B.L., Gitman, D.M., Tyutin, I.V.: Constructing quantum observables and self-adjoint extensions of symmetric operators.I. Russ. Phys. J. 50(1) 1–31 (2007)

    Google Scholar 

  31. B.L. Voronov, D.M. Gitman, I.V.Tyutin, Constructing quantum observables and self-adjoint extensions of symmetric operators. II. Differential operators, Russ. Phys. J. 50/9 853–884 (2007)

    Google Scholar 

  32. Voronov, B.L., Gitman, D.M., Tyutin, I.V.: Constructing quantum observables and self-adjoint extensions of symmetric operators. III. Self-adjoint boundary conditions. Russ. Phys. J. 51(2) 115–157 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gitman, D.M., Tyutin, I.V., Voronov, B.L. (2012). Introduction. In: Self-adjoint Extensions in Quantum Mechanics. Progress in Mathematical Physics, vol 62. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4662-2_1

Download citation

Publish with us

Policies and ethics