Advertisement

State Feedback and State Observers

  • Panos J. Antsaklis
  • Anthony N. Michel

Keywords

State Feedback State Observer Linear Quadratic Regulator Algebraic Riccati Equation Controller Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.J. Antsaklis and A.N. Michel, Linear Systems, Birkhäuser, Boston, MA, 2006.MATHGoogle Scholar
  2. 2.
    J. Ackermann, “Der Entwurf linearer Regelungssysteme im Zustandsraum,” Regelungstechnik und Prozessdatenverarbeitung, Vol. 7, pp. 297–300, 1972.Google Scholar
  3. 3.
    B.D.O. Anderson and J.B. Moore, Optimal Control. Linear Quadratic Methods, Prentice-Hall, Englewood, Cliffs, NJ, 1990.MATHGoogle Scholar
  4. 4.
    P.J. Antsaklis, “Some new matrix methods applied to multivariable system analysis and design,” Ph.D. Dissertation, Brown University, Providence, RI, May 1976.Google Scholar
  5. 5.
    P.J. Antsaklis and W.A. Wolovich, “Arbitrary pole placement using linear output feedback compensation,” Int. J. Control, Vol. 25, No. 6, pp. 915–925, 1977.MATHCrossRefMathSciNetGoogle Scholar
  6. 7.
    P.J. Antsaklis and Z. Gao, “Polynomial and rational matrix interpolation: theory and control applications,” Int. J. Control, Vol. 58, No. 2, pp. 349–404, August 1993.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Athans and P.L. Falb, Optimal Control, McGraw-Hill, New York, NY, 1966.MATHGoogle Scholar
  8. 8.
    R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.Google Scholar
  9. 9.
    A.E. Bryson and Y.C. Ho, Applied Optimal Control, Holsted Press, New York, NY, 1968.Google Scholar
  10. 10.
    P. Dorato, C. Abdallah, and V. Cerone, Linear-Quadratic Control: An Introduction, Prentice-Hall, Englewood Cliffs, NJ, 1995.MATHGoogle Scholar
  11. 11.
    T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.MATHGoogle Scholar
  12. 12.
    H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley, New York, NY, 1972.MATHGoogle Scholar
  13. 13.
    F.L. Lewis, Optimal Control, Wiley, New York, NY, 1986.MATHGoogle Scholar
  14. 14.
    D.G. Luenberger, “Observing the state of a linear system,” IEEE Trans. Mil. Electron, Vol. MIL-8, pp. 74–80, 1964.CrossRefGoogle Scholar
  15. 15.
    D.G. Luenberger, “Observers for multivariable systems,” IEEE Trans. Auto. Control, Vol. AC-11, pp. 190–199, 1966.CrossRefGoogle Scholar
  16. 16.
    D.G. Luenberger, “An introduction to observers,” IEEE Trans. Auto. Control, Vol. AC-16, pp. 596–603, Dec. 1971.CrossRefGoogle Scholar
  17. 17.
    B.C. Moore, “On the flexibility offered by state feedback in multivariable systems beyond closed loop eigenvalue assignment,” IEEE Trans. Auto. Control, Vol. AC-21, pp. 689–692, 1976; see also Vol. AC-22, pp. 140–141, 1977 for the repeated eigenvalue case.CrossRefGoogle Scholar
  18. 18.
    V.M. Popov, “Hyperstability and optimality of automatic systems with several control functions,” Rev. Roum. Sci. Tech. Ser. Electrotech Energ., Vol. 9, pp. 629–690, 1964. See also V.M. Popov, Hyperstability of Control Systems, Springer-Verlag, New York, NY, 1973.Google Scholar
  19. 19.
    J. O’Reilly, Observers for Linear Systems, Academic Press, New York, NY, 1983.MATHGoogle Scholar
  20. 20.
    J. Rissanen, “Control system synthesis by analogue computer based on the generalized linear feedback concept,” in Proc. Symp. Analog Comp. Applied to the Study of Chem. Processes, pp. 1–13, Intern. Seminar, Brussels, 1960. Presses Académiques Européennes, Bruxelles, 1961.Google Scholar
  21. 21.
    H.H. Rosenbrock, State-Space and Multivariable Theory, Wiley, New York, NY, 1970.MATHGoogle Scholar
  22. 22.
    G. Stein and M. Athans, “The LQG/LTR procedure for multivariable feedback control design,” IEEE Trans. Auto. Control, Vol. AC-32, pp. 105–114, February, 1987.CrossRefGoogle Scholar
  23. 23.
    W.A. Wolovich, Linear Multivariable Systems, Springer-Verlag, New York, NY, 1974.MATHGoogle Scholar
  24. 24.
    W.M. Wonham, “On pole assigment in multi-input controllable linear systems,” IEEE Trans. Auto. Control, Vol. AC-12, pp. 660–665, 1967.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • Panos J. Antsaklis
    • 1
  • Anthony N. Michel
    • 1
  1. 1.Department of Electrical EngineeringUniversity of Notre DameU.S.A

Personalised recommendations