Advertisement

Stability

  • Panos J. Antsaklis
  • Anthony N. Michel

Keywords

Equilibrium Point Unit Circle Lyapunov Function Asymptotic Stability Stability Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.J. Antsaklis and A.N. Michel, Linear Systems, Birkhäuser, Boston, MA, 2006.MATHGoogle Scholar
  2. 2.
    R.W. Brockett, Finite Dimensional Linear Systems, Wiley, New York, NY, 1970.MATHGoogle Scholar
  3. 3.
    C.T. Chen, Linear System Theory and Design, Holt, Rinehart and Winston, New York, NY, 1984.Google Scholar
  4. 4.
    R.A. DeCarlo, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1989.Google Scholar
  5. 5.
    C.A. Desoer and M. Vidyasagar, Feedback Systems: Input–Output Properties, Academic Press, New York, NY, 1975.MATHGoogle Scholar
  6. 6.
    W. Hahn, Stability of Motion, Springer-Verlag, New York, NY, 1967.MATHGoogle Scholar
  7. 7.
    T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.MATHGoogle Scholar
  8. 8.
    H.K. Khalil, Nonlinear Systems, Macmillan, New York, NY, 1992.MATHGoogle Scholar
  9. 9.
    J.P. LaSalle, The Stability and Control of Discrete Processes, Springer-Verlag, New York, NY, 1986.MATHGoogle Scholar
  10. 10.
    J.P. LaSalle and S. Lefschetz, Stability by Liapunov’s Direct Method, Academic Press, New York, NY, 1961.Google Scholar
  11. 11.
    M.A. Liapounoff, “Problème générale de la stabilité de mouvement,” Ann. Fac. Sci. Toulouse, Vol. 9, 1907, pp. 203–474. (Translation of a paper published in Comm. Soc. Math. Kharkow 1893, reprinted in Ann. Math. Studies, Vol. 17, 1949, Princeton, NJ).MathSciNetGoogle Scholar
  12. 12.
    A.N. Michel, “Stability: the common thread in the evolution of feedback control,” IEEE Control Systems, Vol. 16, 1996, pp. 50–60.CrossRefGoogle Scholar
  13. 13.
    A.N. Michel and R.K. Miller, Qualitative Analysis of Large Scale Dynamical Systems, Academic Press, New York, NY, 1977.MATHGoogle Scholar
  14. 14.
    A.N. Michel, K. Wang, and B. Hu, Qualitative Theory of Dynamical Systems, Second Edition, Marcel Dekker, New York, NY, 2001.MATHGoogle Scholar
  15. 15.
    R.K. Miller and A.N. Michel, Ordinary Differential Equations, Academic Press, New York, NY, 1982.MATHGoogle Scholar
  16. 16.
    W.J. Rugh, Linear System Theory, Second Edition, Prentice-Hall, Englewood Cliffs, NJ, 1999.Google Scholar
  17. 17.
    I.W. Sandberg, “On the L_2-boundedness of solutions of nonlinear functional equations,” Bell Syst. Tech. J., Vol. 43, 1964, pp. 1581–1599.MathSciNetGoogle Scholar
  18. 18.
    I.W. Sandberg, “A frequency-domain condition for stability of feedback systems containing a single time-varying nonlinear element,” Bell Syst. Tech. J., Vol. 43, 1964, pp. 1601–1608.MathSciNetGoogle Scholar
  19. 19.
    I.W. Sandberg, “Some results on the theory of physical systems governed by nonlinear functional equations,” Bell Syst. Tech. J., Vol. 44, 1965, pp. 871–898.MathSciNetGoogle Scholar
  20. 20.
    M. Vidyasagar, Nonlinear Systems Analysis, 2d edition, Prentice Hall, Englewood Cliffs, NJ, 1993.MATHGoogle Scholar
  21. 21.
    G. Zames, “On the input–output stability of time-varying nonlinear feedback systems, Part I,” IEEE Trans. on Automat. Contr., Vol. 11, 1966, pp. 228–238.CrossRefGoogle Scholar
  22. 22.
    G. Zames, “On the input–output stability of time-varying nonlinear feedback systems, Part II,” IEEE Trans. on Automat. Contr., Vol. 11, 1966, pp. 465–476.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • Panos J. Antsaklis
    • 1
  • Anthony N. Michel
    • 1
  1. 1.Department of Electrical EngineeringUniversity of Notre DameU.S.A

Personalised recommendations