Advertisement

Feedback Control Systems

  • Panos J. Antsaklis
  • Anthony N. Michel

Keywords

Attenuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.J. Antsaklis and A.N. Michel, Linear Systems, Birkhäuser, Boston, MA, 2006.MATHGoogle Scholar
  2. 2.
    P.J. Antsaklis, “Some relations satisfied by prime polynomial matrices and their role in linear multivariable system theory,” IEEE Trans. Auto. Control, Vol. AC-24, No. 4, pp. 611–616, August 1979.CrossRefMathSciNetGoogle Scholar
  3. 3.
    P.J. Antsaklis, Notes on: Polynomial Matrix Representation of Linear Control Systems, Pub. No. 80/17, Dept. of Elec. Engr., Imperial College, 1980.Google Scholar
  4. 4.
    P.J. Antsaklis, Lecture Notes of the graduate course, Feedback Systems, University of Notre Dame, Spring 1985.Google Scholar
  5. 5.
    P.J. Antsaklis and O.R. Gonzalez, “Stability parameterizations and stable hidden modes in two degrees of freedom control design,’ Proc. of the 25th Annual Allerton Conference on Communication, Control and Computing, pp. 546–555, Monticelo, IL, Sept. 30–Oct. 2, 1987.Google Scholar
  6. 6.
    P.J. Antsaklis and M.K. Sain, “Unity feedback compensation of unstable plants,” Proc. of the 20th IEEE Conf. on Decision and Control, pp. 305–308, Dec. 1981.Google Scholar
  7. 7.
    P.J. Antsaklis and M.K. Sain, “Feedback controller parameterizations: finite hidden modes and causality,” in Multivariable Control: New Concepts and Tools, S. G. Tzafestas, Ed., D. Reidel Pub., Dordrecht, Holland, 1984.Google Scholar
  8. 8.
    F.M. Callier and C.A. Desoer, Multivariable Feedback Systems, Springer-Verlag, New York, NY, 1982.Google Scholar
  9. 9.
    C.T. Chen, Linear System Theory and Design, Holt, Reinehart and Winston, New York, NY, 1984.Google Scholar
  10. 10.
    C.A. Desoer, R.W. Liu, J. Murray, and R. Saeks, “Feedback system design: the fractional approach to analysis and synthesis,” IEEE Trans. Auto. Control, Vol. AC-25, pp. 399–412, June 1980.CrossRefMathSciNetGoogle Scholar
  11. 11.
    P.L. Falb and W.A. Wolovich, “Decoupling in the design of multivariable control systems,” IEEE Trans. Auto. Control, Vol. AC-12, pp. 651–659, 1967.CrossRefGoogle Scholar
  12. 12.
    O.R. Gonzalez and P.J. Antsaklis, “Implementations of two degrees of freedom controllers,” Proc. of the 1989 American Control Conference, pp. 269–273, Pittsburgh, PA, June 21–23, 1989.Google Scholar
  13. 13.
    O.R. Gonzalez and P.J. Antsaklis, “Sensitivity considerations in the control of generalized plants,” IEEE Trans. Auto. Control, Vol. 34, No. 8, pp. 885–888, August 1989.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    O.R. Gonzalez and P.J. Antsaklis, “Hidden modes of two degrees of freedom systems in control design,” IEEE Trans. Auto. Control, Vol. 35, No. 4, pp. 502–506, April 1990.MATHCrossRefGoogle Scholar
  15. 15.
    O.R. Gonzalez and P.J. Antsaklis, “Internal models in regulation, stabilization and tracking,” Int. J. Control, Vol. 53, No. 2, pp. 411–430, 1991.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.MATHGoogle Scholar
  17. 17.
    V. Kucera, Discrete Linear Control, Wiley, New York, NY, 1979.MATHGoogle Scholar
  18. 18.
    H. H. Rosenbrock, State-Space and Multivariable Theory, Wiley, New York, NY, 1970.MATHGoogle Scholar
  19. 19.
    A.I.G. Vardulakis, Linear Multivariable Control. Algebraic Analysis and Synthesis Methods, Wiley, New York, NY, 1991.MATHGoogle Scholar
  20. 20.
    M. Vidyasagar, Control System Synthesis. A Factorization Approach, MIT Press, Cambridge, MA, 1985.MATHGoogle Scholar
  21. 21.
    T. Williams and P.J. Antsaklis, “Decoupling,” The Control Handbook, Chapter 50, pp. 745–804, CRC Press and IEEE Press, New York, NY, 1996.Google Scholar
  22. 22.
    W.A. Wolovich, Linear Multivariable Systems, Springer-Verlag, New York, NY, 1974.MATHGoogle Scholar
  23. 23.
    D.C. Youla, H.A. Jabr, and J.J. Bongiorno, Jr., “Modern Wiener–Hopf design of optimal controllers – Part II: The multivariable case,” IEEE Trans. Auto. Control, Vol. AC-21, pp. 319–338, June 1976.CrossRefMathSciNetGoogle Scholar
  24. 24.
    G. Zames, “Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses,” IEEE Trans. Auto. Control, Vol. 26, pp. 301–320, 1981.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • Panos J. Antsaklis
    • 1
  • Anthony N. Michel
    • 1
  1. 1.Department of Electrical EngineeringUniversity of Notre DameU.S.A

Personalised recommendations