Infinite-Dimensional Dynamical Systems

  • Anthony N. Michel
  • Ling Hou
  • Derong Liu
Part of the Systems&Control: Foundations&Applications book series (SCFA)


Banach Space Lyapunov Function Exponential Stability Functional Differential Equation Normed Linear Space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Avez, Differential Calculus, New York: Wiley, 1986.MATHGoogle Scholar
  2. 2.
    D. D. Bainov and P. S. Simeonov, Systems with Impulse Effects: Stability Theory and Applications, New York: Halsted Press, 1989.MATHGoogle Scholar
  3. 3.
    R. Bellman and K. L. Cooke, Differential-Difference Equations, New York: Academic Press, 1963.MATHGoogle Scholar
  4. 4.
    J. L. Daleckii and M. G. Krein, Stability of Solutions of Differential Equations in Banach Space, Translations of Mathematical Monographs, vol. 43, Providence, RI: American Mathematical Society, 1974.Google Scholar
  5. 5.
    R. DeCarlo, M. Branicky, S. Pettersson, and B. Lennartson, “Perspectives on the stability and stabilizability of hybrid systems,” Proc. IEEE, vol. 88, pp. 1069–1082, 2000.CrossRefGoogle Scholar
  6. 6.
    A. Friedman, Partial Differential Equations of Parabolic Type, Englewood Cliffs, NJ: Prentice Hall, 1964.MATHGoogle Scholar
  7. 7.
    P. R. Garabedian, Partial Differential Equations, New York: Chelsea, 1986.Google Scholar
  8. 8.
    R. Haberman, Elementary Applied Differential Equations with Fourier Series and Boundary Value Problems, Englewood Cliffs, NJ: Prentice Hall, 1998.MATHGoogle Scholar
  9. 9.
    J. K. Hale, “Dynamical systems and stability,” J. Math. Anal. Appl., vol. 26, pp. 39–59, 1969.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    J. K. Hale, Functional Differential Equations, New York: Springer-Verlag, 1971.MATHGoogle Scholar
  11. 11.
    J. K. Hale, “Functional differential equations with infinite delays,” J. Math.Anal. Appl., vol. 48, pp. 276–283, 1974.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    E. Hille and R. S. Phillips, Functional Analysis and Semigroups,American Math.Soc. Colloquium Publ. 33, Providence, RI: American Mathematical Society, 1957.Google Scholar
  13. 13.
    L. Höormander, Linear Partial Differential Equations, New York: Springer-Verlag, 1963.Google Scholar
  14. 14.
    L. Höormander, The Analysis of Linear Partial Differential Operators, vol. I, II, III, IV, New York: Springer-Verlag, 1983–1985.Google Scholar
  15. 15.
    N. N. Krasovskii, Stability of Motion, Stanford, CA: Stanford University Press, 1963.MATHGoogle Scholar
  16. 16.
    S. G. Krein, Linear Differential Equations in Banach Spaces, Translation of Mathematical Monographs, vol. 29, Providence, RI: American Mathematical Society, 1970.Google Scholar
  17. 17.
    N. V. Krylov, Nonlinear Elliptic and Parabolic Equations of the Second Order, Boston: D. Reidel, 1987.MATHGoogle Scholar
  18. 18.
    Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, New York: Academic Press, 1993.MATHGoogle Scholar
  19. 19.
    T. Kurtz, “Convergence of sequences of semigroups of nonlinear equations with applications to gas kinetics,” Trans. Amer. Math. Soc., vol. 186, pp. 259–272, 1973.CrossRefMathSciNetGoogle Scholar
  20. 20.
    V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, vol. I, II, New York: Academic Press, 1969.Google Scholar
  21. 21.
    J.-H. Li, A. N. Michel, and W. Porod, “Qualitative analysis and synthesis of a class of neural networks,” IEEE Trans. Circ. Syst., vol. 35, pp. 976–987, 1988.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    A. N. Michel, “Recent trends in the stability analysis of hybrid dynamical systems,” IEEE Trans. Circ. Syst. I: Fund. Theor. Appl., vol. 46, pp. 120–134, 1999.MATHCrossRefGoogle Scholar
  23. 23.
    A. N. Michel and B. Hu, “Towards a stability theory of general hybrid dynamical systems,” Automatica, vol. 35, pp. 371–384, 1999.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    A. N. Michel and D. Liu, Qualitative Analysis and Synthesis of Recurrent Neural Networks, New York: Marcel Dekker, 2002.MATHGoogle Scholar
  25. 25.
    A. N. Michel and R. K. Miller, Qualitative Analysis of Large Scale Dynamical Systems, New York: Academic Press, 1977.MATHGoogle Scholar
  26. 26.
    A. N. Michel and R. K. Miller, “Qualitative analysis of interconnected systems described on Banach spaces: Well posedness, instability, and Lagrange stability,” Zeitschrift füur angewandte Mathematik und Mechanik, vol. 58, pp. 289–300, 1978.CrossRefMathSciNetGoogle Scholar
  27. 27.
    A. N. Michel and Y. Sun, “Stability of discontinuous Cauchy problems in Banach space,” Nonlinear Anal., vol. 65, pp. 1805–1832, 2006.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    A. N. Michel, Y. Sun, and A. P. Molchanov, “Stability analysis of discontinuous dynamical systems determined by semigroups,” IEEE Trans. Autom. Control, vol. 50, pp. 1277–1290, 2005.CrossRefMathSciNetGoogle Scholar
  29. 29.
    A. N. Michel, K. Wang, and B. Hu, Qualitative Theory of Dynamical Systems: The Role of Stability Preserving Mappings, Second Edition, New York: Marcel Dekker, 2001.MATHGoogle Scholar
  30. 30.
    A. N. Michel, K. Wang, D. Liu, and H. Ye, “Qualitative limitations incurred in implementations of recurrent neural networks,” IEEE Control Syst. Mag., vol. 15, pp. 56–65, 1995.CrossRefGoogle Scholar
  31. 31.
    R. K. Miller, Nonlinear Volterra Integral Equations, New York: Benjamin, 1971.MATHGoogle Scholar
  32. 32.
    R. K. Miller and A. N. Michel, “Stability theory for countably infinite systems of differential equations,” Tôohoku Math. J. vol. 32, pp. 155–168, 1980.MATHMathSciNetGoogle Scholar
  33. 33.
    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, New York: Springer-Verlag, 1983.MATHGoogle Scholar
  34. 34.
    I. C. Petrovskij, Lectures on Partial Differential Equations, 3rd Ed., Moscow: Fizwatgiz, 1961.Google Scholar
  35. 35.
    H. Plaza and W. H. Kohler, “Coupled-reactor kinetics equations,” Nuclear Sci.Eng., vol. 22, pp. 419–422, 1966.Google Scholar
  36. 36.
    R. D. Rasmussen and A. N. Michel, “Stability of interconnected dynamical systems described on Banach spaces,” IEEE Trans. Autom. Control, vol. 21, pp. 464–471, 1976.MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    B. S. Razumikhin, “On the stability of systems with a delay,” Prikl. Mat. Mek., vol. 20, pp. 500–512, 1956.Google Scholar
  38. 38.
    B. S. Razumikhin, “Application of Liapunov’s method to problems in the stability of systems with delay,” Avtomat. i Telemeh., vol. 21, pp. 740–774, 1960.Google Scholar
  39. 39.
    Y. Sun,A. N. Michel, and G. Zhai, “Stability of discontinuous retarded functional differential equations with applications,” IEEE Trans. Autom. Control, vol. 50, pp. 1090–1105, 2005.CrossRefMathSciNetGoogle Scholar
  40. 40.
    H. Ye, A. N. Michel, and L. Hou, “Stability theory for hybrid dynamical systems,” IEEE Trans. Autom. Control, vol. 43, pp. 461–474, 1998.MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    H. Ye, A. N. Michel, and K. Wang, “Global stability and local stability of Hopfield neural networks with delays,” Phys. Rev. E, vol. 50, pp. 4206–4213, 1994.CrossRefMathSciNetGoogle Scholar
  42. 42.
    H. Ye, A. N. Michel, and K. Wang, “Qualitative analysis of Cohen-Grossberg neural networks with multiple delays,” Phys. Rev. E, vol. 51, pp. 2611–2618, 1995.CrossRefMathSciNetGoogle Scholar
  43. 43.
    T. Yoshizawa, Stability Theory by Lyapunov’s Second Method, Tokyo: Math. Soc. Japan, 1966.Google Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • Anthony N. Michel
    • 1
  • Ling Hou
    • 2
  • Derong Liu
    • 3
  1. 1.Department of Electrical EngineeringUniversity of Notre DameNotre DameU.S.A
  2. 2.Department of Electrical and Computer EngineeringSt. Cloud State UniversitySt. CloudU.S.A
  3. 3.Department of Electrical and Computer EngineeringUniversity of Illinois at ChicagoChicagoU.S.A

Personalised recommendations