Advertisement

Applications to Finite-Dimensional Dynamical Systems

  • Anthony N. Michel
  • Ling Hou
  • Derong Liu
Part of the Systems&Control: Foundations&Applications book series (SCFA)

Keywords

Lyapunov Function Absolute Stability Feedback Control System Digital Controller Saturation Nonlinearity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Ackerman, Sampled-Data Control Systems: Analysis and Synthesis, Robust Systems Design, New York: Springer-Verlag, 1985.Google Scholar
  2. 2.
    M. A. Aizerman and F. R. Gantmacher, Absolute Stability of Regular Systems, San Francisco: Holden-Day, 1963.Google Scholar
  3. 3.
    P. J. Antsaklis and A. N. Michel, Linear Systems, Boston: Birkhäauser, 2006.MATHGoogle Scholar
  4. 4.
    G. S. Axelby, “Analysis of pulse-width modulation with a variable transport lag in a rendezvoue radar,” IEEE Trans. Autom. Control, vol. 9, pp. 514–525, 1964.CrossRefGoogle Scholar
  5. 5.
    A. Balestrino, A. Eisenberg, and L. Sciavicco, “A generalized approach to the stability analysis of PWM feedback control systems,” J. Franklin Institute, vol. 298, pp. 45–48, 1974.MATHCrossRefGoogle Scholar
  6. 6.
    A. T. Barabanov and Ye. F. Starozhilov, “Investigation of the stability of continuous discrete systems by Lyapunov’s second methods,” Soviet J. Autom. Inf. Sci., vol. 21, pp. 35–41, 1988.MATHMathSciNetGoogle Scholar
  7. 7.
    J. E. Bertram, “The effects of quantization in sampled feedback systems,” Trans. AIEE Appl. Ind., Part 2, vol. 77, pp. 177–181, 1958.Google Scholar
  8. 8.
    E. Bolzer, “The limitation of impulses in cardiac muscle,” Amer. J. Physiol., vol. 138, pp. 273–282, 1942.Google Scholar
  9. 9.
    G. A. Carpenter, M. Cohen, and S. Grossberg, “Computing with neural networks,”Science, vol. 235, pp. 1226–1227, 1987.CrossRefGoogle Scholar
  10. 10.
    J.-H. Chou, S.-H. Chen, and I.-R. Horng, “Robust stability bound on linear timevarying uncertainties for linear digital control systems under finite wordlength effects,” JSME Int. J., Series C, vol. 39, pp. 767–771, 1996.Google Scholar
  11. 11.
    M. Cohen and S. Grossberg, “Absolute stability of global pattern formation and parallel memory storage by competitive networks,” IEEE Trans. Syst., Man,Cyberne., vol. 13, pp. 815–826, 1983.MATHMathSciNetGoogle Scholar
  12. 12.
    F. R. Delfelt and G. J. Murphy, “Analysis of pulse-width-modulated control systems,” IEEE Trans. Autom. Control, vol. 6, pp. 283–292, 1961.CrossRefGoogle Scholar
  13. 13.
    J. A. Farrell and A. N. Michel, “Estimates of asymptotic trajectory bounds in digital implementations of linear feedback control systems,” IEEE Trans Autom. Control, vol. 34, pp. 1319–1324, 1989.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    B. A. Francis and T. T. Georgiou, “Stability theory for linear time-invariant plants with periodic digital controllers,” IEEE Trans. Autom. Control, vol. 33, pp. 820–832, 1988.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    G. F. Franklin and J. D. Powell, Digital Control of Dynamic Systems, Reading, MA: Addison-Wesley, 1980.Google Scholar
  16. 16.
    A. Kh. Gelig and A. N. Churilov, Stability and Oscillations of Nonlinear Pulse- Modulated Systems, Boston: Birkhäauser, 1998.MATHGoogle Scholar
  17. 17.
    M. Gouy, “On a constant temperature oven,” J. Physique, vol. 6, pp. 479–483, 1897.Google Scholar
  18. 18.
    S. C. Gupta and E. I. Jury, “Statistical study of pulse-width-modulated control systems,” J. Franklin Institute, vol. 273, pp. 292–321, 1962.CrossRefGoogle Scholar
  19. 19.
    L. T. Grujić, A. A. Martynyuk, and M. Ribbens-Pavella, Large Scale Systems Under Structural and Singular Perturbation, Berlin: Springer-Verlag, 1987.Google Scholar
  20. 20.
    J. J. Hopfield, “Neurons with graded response have collective computational properties like those of two-state neurons,” Proc. Nat. Acad. Sci. USA, vol. 81, pp. 3088–3092, 1984.CrossRefGoogle Scholar
  21. 21.
    L. Hou, Qualitative Analysis of Discontinuous Deterministic and Stochastic Dynamical Systems, Ph.D. Dissertation, University of Notre Dame, Notre Dame, IN, 2000.Google Scholar
  22. 22.
    L. Hou, “Stability analysis of pulse-width-modulated feedback systems with type 2 modulation,” Proc. 44th IEEE Conference on Decision and Control, Paradise Island, Bahamas, Dec. 2004, pp. 2972–2977.Google Scholar
  23. 23.
    L. Hou, “Stability analysis of pulse-width-modulated feedback systems with type 2 modulation: The critical case,” Proc. 2005 Int. Symposium on Circuits and Systems, Tokyo, Japan, May 2005, pp. 3187–3190.Google Scholar
  24. 24.
    L. Hou and A. N. Michel, “Asymptotic stability of systems with saturation constraints,” IEEE Trans. Autom. Control, vol. 43, pp. 1148–1154, 1998.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    L. Hou and A. N. Michel, “Stability analysis of pulse-width-modulated feedback systems,” Automatica, vol. 37, pp. 1335–1349, 2001.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    L. Hou, A. N. Michel, and H. Ye, “Some qualitative properties of sampled-data control systems,” Proc. 35th IEEE Conference on Decision and Control, Kobe, Japan, Dec. 1996, pp. 911–917.Google Scholar
  27. 27.
    B. Hu, Z. Feng, and A. N. Michel, “Quantized sampled-data feedback stabilization for linear and nonlinear control systems,” Proc. 38th IEEE Conference on Decision and Control, Phoenix, AZ, Dec. 1999, pp. 4392–4397.Google Scholar
  28. 28.
    B. Hu and A. N. Michel, “Robust analysis of digital control systems with time-varying sampling periods,” Proc. 1999 American Control Conference, San Diego, CA, June 1999, pp. 3484–3488.Google Scholar
  29. 29.
    B. Hu and A. N. Michel, “Stability analysis of digital feedback control systems with time-varying sampling periods,” Automatica, vol. 36, pp. 897–905, 2000.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    P. A. Iglesias, “On the stability of sampled-date linear time-varying feedback systems,” Proc. 33rd IEEE Conference on Decision and Control, Orlando, FL, Dec. 1994, pp. 219–224.Google Scholar
  31. 31.
    T. T. Kadota and H. C. Bourne, “Stability conditions of pulse-width-modulated systems through the second method of Lyapunov,” IEEE Trans. Autom. Control, vol. 6, pp. 266–276, 1961.CrossRefGoogle Scholar
  32. 32.
    R. E. Kalman, “Lyapunov functions for the problem of Luré in automatic control,” Proc. Nat. Acad. Sci. USA, vol. 49, pp. 201–205, 1963.MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    B. Katz, “The nerve impulse,” Sci. Amer., vol. 187, pp. 55–64, 1962.CrossRefGoogle Scholar
  34. 34.
    A. Khayatian and D.G. Taylor, “Feedback control of linear systems by multi-rate pulse-width modulation,” IEEE Trans. Autom. Control, vol. 39, pp. 1292–1297, 1994.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    A. Khayatian and D. G. Taylor, “Multi-rate modeling and control design for switched-mode power converters,” IEEE Trans. Autom. Control, vol. 39, pp. 1848–1852, 1994.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    A. I. Korshunov, “Remarks on the article by V.M. Kuntsevich ‘Global asymptotic stability of two classes of control systems with pulse-duration and pulse-frequency modulations’,” Autom. Remote Control, vol. 34,no. 8, pt. 2, pp. 1356–1357, Aug. 1973.Google Scholar
  37. 37.
    B. Kosko, Neural Networks and Fuzzy Systems, Englewood Cliffs, NJ: Prentice Hall, 1992.MATHGoogle Scholar
  38. 38.
    V. M. Kuntsevich, “Global asymptotic stability of two classes of control systems with pulse duration and pulse frequency modulations,” Autom. Remote Control, vol. 33, no. 7, pp. 1124–32, July 1972.MathSciNetGoogle Scholar
  39. 39.
    V. M. Kuntsevich and Yu. N. Akekhovol, “Fundamentals of nonlinear control systems with pulse-frequency and pulse width modulation,” Automatica, vol. 7, pp. 83–81, 1971.CrossRefGoogle Scholar
  40. 40.
    S. Lefschetz, Stability of Nonlinear Control Systems, New York: Academic Press, 1965.MATHGoogle Scholar
  41. 41.
    J.-H. Li, A. N. Michel, and W. Porod, “Qualitative analysis and synthesis of a class of neural networks,” IEEE Trans. Circ. Syst., vol. 35, pp. 976–986, 1988.MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    J.-H. Li, A. N. Michel, and W. Porod, “Analysis and synthesis of a class of neural networks: Linear systems operating on a closed hypercube,” IEEE Trans. Circ.Syst., vol. 36, pp. 1405–1422, Nov. 1989.MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    D. Liu and A. N. Michel, “Asymptotic stability of discrete-time systems with saturation nonlinearities with applications to digital filters,” IEEE Trans. Circ.Syst. I: Fund. Theor. Appl., vol. 39, pp. 798–807, Oct. 1992.MATHCrossRefGoogle Scholar
  44. 44.
    D. Liu and A. N. Michel, Dynamical Systems with Saturation Nonlinearities: Analysis and Design, New York: Springer-Verlag, 1994.MATHGoogle Scholar
  45. 45.
    A. I. Luré, On Some Nonlinear Problems in the Theory of Automatic Control, London: H. M. Stationary Office, 1951.Google Scholar
  46. 46.
    B. H. C. Matthews, “The nervous system as an electrical instrument,” J. Inst.Elec. Eng., vol. 95, pp. 397–402, 1948.Google Scholar
  47. 47.
    A. N. Michel and J. A. Farrell, “Associate memories via artificial neural networks,” IEEE Control Sys. Mag., vol. 10, pp. 6–17, 1990.CrossRefGoogle Scholar
  48. 48.
    A. N. Michel, J. A. Farrell, and W. Porod, “Qualitative analysis of neural networks,” IEEE Trans. Circ. Syst., vol. 36, pp. 229–243, 1989.MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    A. N. Michel, J. A. Farrell, and H. F. Sun, “Analysis and synthesis techniques for Hopfield type synchronous discrete time neural networks with applications to content addressable memory,” IEEE Trans. Circ. Syst., vol. 37, pp. 1356–1366, 1990.CrossRefMathSciNetGoogle Scholar
  50. 50.
    A. N. Michel and D. Liu, Qualitative Analysis and Synthesis of Recurrent Neural Networks, New York: Marcel Dekker, 2002.MATHGoogle Scholar
  51. 51.
    A. N. Michel and R. K. Miller, Qualitative Analysis of Large Scale Dynamical Systems, New York: Academic Press, 1977.MATHGoogle Scholar
  52. 52.
    A. N. Michel, K. Wang, and B. Hu, Qualitative Theory of Dynamical Systems- The Role of Stability Preserving Mappings, 2nd Edition, New York: Marcel Dekker, 2001.MATHGoogle Scholar
  53. 53.
    A. N. Michel, J. Si, and G. Yen, “Analysis and synthesis of a class of discretetime neural networks described on hypercubes,” IEEE Trans. Neural Netw., vol. 2, pp. 32–46, Jan. 1991.CrossRefGoogle Scholar
  54. 54.
    R. K. Miller and A. N. Michel, Ordinary Differential Equations, New York: Academic Press, 1982.MATHGoogle Scholar
  55. 55.
    R. K. Miller, A. N. Michel, and J. A. Farrell, “Quantizer effects on steady-state error specifications of digital feedback control systems,” IEEE Trans. Autom. Control, vol. 34, pp. 651–654, 1989.MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    R. K. Miller, M. S. Mousa, and A. N. Michel, “Quantization and overflow effects in digital implementations of linear dynamic controllers,” IEEE Trans. Autom. Control, vol. 33, pp. 698–704, July 1988.MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    W. L. Mills, C. T. Mullis, and R. A. Roberts, “Digital filter realizations without overflow oscillations,” IEEE Trans. Acoust.,Speech, Signal Proc., vol. ASSP-26, pp. 334–338, Aug. 1978.CrossRefMathSciNetGoogle Scholar
  58. 58.
    B. J. Min, C. Slivinsky, and R. G. Hoft, “Absolute stability analysis of PWM systems,” IEEE Trans. Autom. Control, vol. 22, pp. 447–452, 1977.MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    G. J. Murphy and S. H. Wu, “A stability criterion for pulse-width-modulated feedback control systems,” IEEE Trans. Autom. Control, vol. 9, pp. 434–441, 1964.CrossRefMathSciNetGoogle Scholar
  60. 60.
    K. S. Narendra and J. H. Taylor, Frequency Domain Stability for Absolute Stability, New York: Academic Press, 1973.MATHGoogle Scholar
  61. 61.
    E. Polak, “Stability and graphical analysis of first-order pulse-width-modulated sampled-data regulator systems,” IEEE Trans. Autom. Control, vol. 6, pp. 276–282, 1961.CrossRefGoogle Scholar
  62. 62.
    V. M. Popov, “Absolute stability of nonlinear systems of automatic control,” Autom. Remote Control, vol. 22, pp. 857–895, 1961.MATHGoogle Scholar
  63. 63.
    I. W. Sandberg, “A theorem concerning limit cycles in digital filters,” Proc. 7th Annual Allerton Conference on Circuit and System Theory, University of Illinois at Urbana-Champaign, Urbana, IL, pp. 63–68, Oct. 1969.Google Scholar
  64. 64.
    D. D. Siljak, Large-Scale Dynamical Systems: Stability and Structure, New York: North Holland, 1978.Google Scholar
  65. 65.
    V. Singh, “Elimination of overflow oscillations in fixed-point state-space digital filters using saturation arithmetic,” IEEE Trans. Circ. Syst., vol. 37, pp. 814–818, 1990.CrossRefGoogle Scholar
  66. 66.
    H. Sira-Ramirez, “A geometric approach to pulse-width modulated control in nonlinear dynamical systems,” IEEE Trans. Autom. Control, vol. 34, pp. 184–187, 1989.MATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    H. Sira-Ramirez and L. S. Orestes, “On the dynamical pulse-width-modulation control of robotic manipulator systems,” Int. J. Robust Control, vol. 6, pp. 517–537, 1996.MATHCrossRefGoogle Scholar
  68. 68.
    H. Sira-Ramirez and M. T. Prada-Rizzo, “Nonlinear feedback regulator design for the Cuk converter,” IEEE Trans. Autom. Control, vol. 37, pp. 1173–1180, 1992.CrossRefMathSciNetGoogle Scholar
  69. 69.
    J. E. Slaughter, “Quantization errors in digital control systems,” IEEE Trans. Autom. Control, vol. 9, pp. 70–74, 1964.CrossRefGoogle Scholar
  70. 70.
    D. G. Taylor, “Pulse-width modulated control of electromechanical systems,” IEEE Trans. Autom. Control, vol. 37, pp. 524–528, 1992. p. 70–74, 1964.Google Scholar
  71. 71.
    S. G. Tsefastas, “Pulse width and pulse frequency modulated control systems,”in Simulation of Control Systems, I. Troch, Editor, New York: North-Holland, 1978, pp. 41–48.Google Scholar
  72. 72.
    P. P. Vaidyanathan and V. Liu, “An improved sufficient condition for absence of limit cycles in digital filters,” IEEE Trans. Circ. Syst., vol. CAS-34, pp. 319–322, Mar. 1987CrossRefGoogle Scholar
  73. 73.
    V. A. Yacubovich, “Solution of certain matrix inequalities encountered in nonlinear control theory,” Soviet Math. Doklady, vol. 5, pp. 652–666, 1964.Google Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • Anthony N. Michel
    • 1
  • Ling Hou
    • 2
  • Derong Liu
    • 3
  1. 1.Department of Electrical EngineeringUniversity of Notre DameNotre DameU.S.A
  2. 2.Department of Electrical and Computer EngineeringSt. Cloud State UniversitySt. CloudU.S.A
  3. 3.Department of Electrical and Computer EngineeringUniversity of Illinois at ChicagoChicagoU.S.A

Personalised recommendations