Skip to main content

Applications to Finite-Dimensional Dynamical Systems

  • Chapter
Stability of Dynamical Systems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Ackerman, Sampled-Data Control Systems: Analysis and Synthesis, Robust Systems Design, New York: Springer-Verlag, 1985.

    Google Scholar 

  2. M. A. Aizerman and F. R. Gantmacher, Absolute Stability of Regular Systems, San Francisco: Holden-Day, 1963.

    Google Scholar 

  3. P. J. Antsaklis and A. N. Michel, Linear Systems, Boston: Birkhäauser, 2006.

    MATH  Google Scholar 

  4. G. S. Axelby, “Analysis of pulse-width modulation with a variable transport lag in a rendezvoue radar,” IEEE Trans. Autom. Control, vol. 9, pp. 514–525, 1964.

    Article  Google Scholar 

  5. A. Balestrino, A. Eisenberg, and L. Sciavicco, “A generalized approach to the stability analysis of PWM feedback control systems,” J. Franklin Institute, vol. 298, pp. 45–48, 1974.

    Article  MATH  Google Scholar 

  6. A. T. Barabanov and Ye. F. Starozhilov, “Investigation of the stability of continuous discrete systems by Lyapunov’s second methods,” Soviet J. Autom. Inf. Sci., vol. 21, pp. 35–41, 1988.

    MATH  MathSciNet  Google Scholar 

  7. J. E. Bertram, “The effects of quantization in sampled feedback systems,” Trans. AIEE Appl. Ind., Part 2, vol. 77, pp. 177–181, 1958.

    Google Scholar 

  8. E. Bolzer, “The limitation of impulses in cardiac muscle,” Amer. J. Physiol., vol. 138, pp. 273–282, 1942.

    Google Scholar 

  9. G. A. Carpenter, M. Cohen, and S. Grossberg, “Computing with neural networks,”Science, vol. 235, pp. 1226–1227, 1987.

    Article  Google Scholar 

  10. J.-H. Chou, S.-H. Chen, and I.-R. Horng, “Robust stability bound on linear timevarying uncertainties for linear digital control systems under finite wordlength effects,” JSME Int. J., Series C, vol. 39, pp. 767–771, 1996.

    Google Scholar 

  11. M. Cohen and S. Grossberg, “Absolute stability of global pattern formation and parallel memory storage by competitive networks,” IEEE Trans. Syst., Man,Cyberne., vol. 13, pp. 815–826, 1983.

    MATH  MathSciNet  Google Scholar 

  12. F. R. Delfelt and G. J. Murphy, “Analysis of pulse-width-modulated control systems,” IEEE Trans. Autom. Control, vol. 6, pp. 283–292, 1961.

    Article  Google Scholar 

  13. J. A. Farrell and A. N. Michel, “Estimates of asymptotic trajectory bounds in digital implementations of linear feedback control systems,” IEEE Trans Autom. Control, vol. 34, pp. 1319–1324, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  14. B. A. Francis and T. T. Georgiou, “Stability theory for linear time-invariant plants with periodic digital controllers,” IEEE Trans. Autom. Control, vol. 33, pp. 820–832, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. F. Franklin and J. D. Powell, Digital Control of Dynamic Systems, Reading, MA: Addison-Wesley, 1980.

    Google Scholar 

  16. A. Kh. Gelig and A. N. Churilov, Stability and Oscillations of Nonlinear Pulse- Modulated Systems, Boston: Birkhäauser, 1998.

    MATH  Google Scholar 

  17. M. Gouy, “On a constant temperature oven,” J. Physique, vol. 6, pp. 479–483, 1897.

    Google Scholar 

  18. S. C. Gupta and E. I. Jury, “Statistical study of pulse-width-modulated control systems,” J. Franklin Institute, vol. 273, pp. 292–321, 1962.

    Article  Google Scholar 

  19. L. T. Grujić, A. A. Martynyuk, and M. Ribbens-Pavella, Large Scale Systems Under Structural and Singular Perturbation, Berlin: Springer-Verlag, 1987.

    Google Scholar 

  20. J. J. Hopfield, “Neurons with graded response have collective computational properties like those of two-state neurons,” Proc. Nat. Acad. Sci. USA, vol. 81, pp. 3088–3092, 1984.

    Article  Google Scholar 

  21. L. Hou, Qualitative Analysis of Discontinuous Deterministic and Stochastic Dynamical Systems, Ph.D. Dissertation, University of Notre Dame, Notre Dame, IN, 2000.

    Google Scholar 

  22. L. Hou, “Stability analysis of pulse-width-modulated feedback systems with type 2 modulation,” Proc. 44th IEEE Conference on Decision and Control, Paradise Island, Bahamas, Dec. 2004, pp. 2972–2977.

    Google Scholar 

  23. L. Hou, “Stability analysis of pulse-width-modulated feedback systems with type 2 modulation: The critical case,” Proc. 2005 Int. Symposium on Circuits and Systems, Tokyo, Japan, May 2005, pp. 3187–3190.

    Google Scholar 

  24. L. Hou and A. N. Michel, “Asymptotic stability of systems with saturation constraints,” IEEE Trans. Autom. Control, vol. 43, pp. 1148–1154, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  25. L. Hou and A. N. Michel, “Stability analysis of pulse-width-modulated feedback systems,” Automatica, vol. 37, pp. 1335–1349, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  26. L. Hou, A. N. Michel, and H. Ye, “Some qualitative properties of sampled-data control systems,” Proc. 35th IEEE Conference on Decision and Control, Kobe, Japan, Dec. 1996, pp. 911–917.

    Google Scholar 

  27. B. Hu, Z. Feng, and A. N. Michel, “Quantized sampled-data feedback stabilization for linear and nonlinear control systems,” Proc. 38th IEEE Conference on Decision and Control, Phoenix, AZ, Dec. 1999, pp. 4392–4397.

    Google Scholar 

  28. B. Hu and A. N. Michel, “Robust analysis of digital control systems with time-varying sampling periods,” Proc. 1999 American Control Conference, San Diego, CA, June 1999, pp. 3484–3488.

    Google Scholar 

  29. B. Hu and A. N. Michel, “Stability analysis of digital feedback control systems with time-varying sampling periods,” Automatica, vol. 36, pp. 897–905, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  30. P. A. Iglesias, “On the stability of sampled-date linear time-varying feedback systems,” Proc. 33rd IEEE Conference on Decision and Control, Orlando, FL, Dec. 1994, pp. 219–224.

    Google Scholar 

  31. T. T. Kadota and H. C. Bourne, “Stability conditions of pulse-width-modulated systems through the second method of Lyapunov,” IEEE Trans. Autom. Control, vol. 6, pp. 266–276, 1961.

    Article  Google Scholar 

  32. R. E. Kalman, “Lyapunov functions for the problem of Luré in automatic control,” Proc. Nat. Acad. Sci. USA, vol. 49, pp. 201–205, 1963.

    Article  MATH  MathSciNet  Google Scholar 

  33. B. Katz, “The nerve impulse,” Sci. Amer., vol. 187, pp. 55–64, 1962.

    Article  Google Scholar 

  34. A. Khayatian and D.G. Taylor, “Feedback control of linear systems by multi-rate pulse-width modulation,” IEEE Trans. Autom. Control, vol. 39, pp. 1292–1297, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  35. A. Khayatian and D. G. Taylor, “Multi-rate modeling and control design for switched-mode power converters,” IEEE Trans. Autom. Control, vol. 39, pp. 1848–1852, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  36. A. I. Korshunov, “Remarks on the article by V.M. Kuntsevich ‘Global asymptotic stability of two classes of control systems with pulse-duration and pulse-frequency modulations’,” Autom. Remote Control, vol. 34,no. 8, pt. 2, pp. 1356–1357, Aug. 1973.

    Google Scholar 

  37. B. Kosko, Neural Networks and Fuzzy Systems, Englewood Cliffs, NJ: Prentice Hall, 1992.

    MATH  Google Scholar 

  38. V. M. Kuntsevich, “Global asymptotic stability of two classes of control systems with pulse duration and pulse frequency modulations,” Autom. Remote Control, vol. 33, no. 7, pp. 1124–32, July 1972.

    MathSciNet  Google Scholar 

  39. V. M. Kuntsevich and Yu. N. Akekhovol, “Fundamentals of nonlinear control systems with pulse-frequency and pulse width modulation,” Automatica, vol. 7, pp. 83–81, 1971.

    Article  Google Scholar 

  40. S. Lefschetz, Stability of Nonlinear Control Systems, New York: Academic Press, 1965.

    MATH  Google Scholar 

  41. J.-H. Li, A. N. Michel, and W. Porod, “Qualitative analysis and synthesis of a class of neural networks,” IEEE Trans. Circ. Syst., vol. 35, pp. 976–986, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  42. J.-H. Li, A. N. Michel, and W. Porod, “Analysis and synthesis of a class of neural networks: Linear systems operating on a closed hypercube,” IEEE Trans. Circ.Syst., vol. 36, pp. 1405–1422, Nov. 1989.

    Article  MATH  MathSciNet  Google Scholar 

  43. D. Liu and A. N. Michel, “Asymptotic stability of discrete-time systems with saturation nonlinearities with applications to digital filters,” IEEE Trans. Circ.Syst. I: Fund. Theor. Appl., vol. 39, pp. 798–807, Oct. 1992.

    Article  MATH  Google Scholar 

  44. D. Liu and A. N. Michel, Dynamical Systems with Saturation Nonlinearities: Analysis and Design, New York: Springer-Verlag, 1994.

    MATH  Google Scholar 

  45. A. I. Luré, On Some Nonlinear Problems in the Theory of Automatic Control, London: H. M. Stationary Office, 1951.

    Google Scholar 

  46. B. H. C. Matthews, “The nervous system as an electrical instrument,” J. Inst.Elec. Eng., vol. 95, pp. 397–402, 1948.

    Google Scholar 

  47. A. N. Michel and J. A. Farrell, “Associate memories via artificial neural networks,” IEEE Control Sys. Mag., vol. 10, pp. 6–17, 1990.

    Article  Google Scholar 

  48. A. N. Michel, J. A. Farrell, and W. Porod, “Qualitative analysis of neural networks,” IEEE Trans. Circ. Syst., vol. 36, pp. 229–243, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  49. A. N. Michel, J. A. Farrell, and H. F. Sun, “Analysis and synthesis techniques for Hopfield type synchronous discrete time neural networks with applications to content addressable memory,” IEEE Trans. Circ. Syst., vol. 37, pp. 1356–1366, 1990.

    Article  MathSciNet  Google Scholar 

  50. A. N. Michel and D. Liu, Qualitative Analysis and Synthesis of Recurrent Neural Networks, New York: Marcel Dekker, 2002.

    MATH  Google Scholar 

  51. A. N. Michel and R. K. Miller, Qualitative Analysis of Large Scale Dynamical Systems, New York: Academic Press, 1977.

    MATH  Google Scholar 

  52. A. N. Michel, K. Wang, and B. Hu, Qualitative Theory of Dynamical Systems- The Role of Stability Preserving Mappings, 2nd Edition, New York: Marcel Dekker, 2001.

    MATH  Google Scholar 

  53. A. N. Michel, J. Si, and G. Yen, “Analysis and synthesis of a class of discretetime neural networks described on hypercubes,” IEEE Trans. Neural Netw., vol. 2, pp. 32–46, Jan. 1991.

    Article  Google Scholar 

  54. R. K. Miller and A. N. Michel, Ordinary Differential Equations, New York: Academic Press, 1982.

    MATH  Google Scholar 

  55. R. K. Miller, A. N. Michel, and J. A. Farrell, “Quantizer effects on steady-state error specifications of digital feedback control systems,” IEEE Trans. Autom. Control, vol. 34, pp. 651–654, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  56. R. K. Miller, M. S. Mousa, and A. N. Michel, “Quantization and overflow effects in digital implementations of linear dynamic controllers,” IEEE Trans. Autom. Control, vol. 33, pp. 698–704, July 1988.

    Article  MATH  MathSciNet  Google Scholar 

  57. W. L. Mills, C. T. Mullis, and R. A. Roberts, “Digital filter realizations without overflow oscillations,” IEEE Trans. Acoust.,Speech, Signal Proc., vol. ASSP-26, pp. 334–338, Aug. 1978.

    Article  MathSciNet  Google Scholar 

  58. B. J. Min, C. Slivinsky, and R. G. Hoft, “Absolute stability analysis of PWM systems,” IEEE Trans. Autom. Control, vol. 22, pp. 447–452, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  59. G. J. Murphy and S. H. Wu, “A stability criterion for pulse-width-modulated feedback control systems,” IEEE Trans. Autom. Control, vol. 9, pp. 434–441, 1964.

    Article  MathSciNet  Google Scholar 

  60. K. S. Narendra and J. H. Taylor, Frequency Domain Stability for Absolute Stability, New York: Academic Press, 1973.

    MATH  Google Scholar 

  61. E. Polak, “Stability and graphical analysis of first-order pulse-width-modulated sampled-data regulator systems,” IEEE Trans. Autom. Control, vol. 6, pp. 276–282, 1961.

    Article  Google Scholar 

  62. V. M. Popov, “Absolute stability of nonlinear systems of automatic control,” Autom. Remote Control, vol. 22, pp. 857–895, 1961.

    MATH  Google Scholar 

  63. I. W. Sandberg, “A theorem concerning limit cycles in digital filters,” Proc. 7th Annual Allerton Conference on Circuit and System Theory, University of Illinois at Urbana-Champaign, Urbana, IL, pp. 63–68, Oct. 1969.

    Google Scholar 

  64. D. D. Siljak, Large-Scale Dynamical Systems: Stability and Structure, New York: North Holland, 1978.

    Google Scholar 

  65. V. Singh, “Elimination of overflow oscillations in fixed-point state-space digital filters using saturation arithmetic,” IEEE Trans. Circ. Syst., vol. 37, pp. 814–818, 1990.

    Article  Google Scholar 

  66. H. Sira-Ramirez, “A geometric approach to pulse-width modulated control in nonlinear dynamical systems,” IEEE Trans. Autom. Control, vol. 34, pp. 184–187, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  67. H. Sira-Ramirez and L. S. Orestes, “On the dynamical pulse-width-modulation control of robotic manipulator systems,” Int. J. Robust Control, vol. 6, pp. 517–537, 1996.

    Article  MATH  Google Scholar 

  68. H. Sira-Ramirez and M. T. Prada-Rizzo, “Nonlinear feedback regulator design for the Cuk converter,” IEEE Trans. Autom. Control, vol. 37, pp. 1173–1180, 1992.

    Article  MathSciNet  Google Scholar 

  69. J. E. Slaughter, “Quantization errors in digital control systems,” IEEE Trans. Autom. Control, vol. 9, pp. 70–74, 1964.

    Article  Google Scholar 

  70. D. G. Taylor, “Pulse-width modulated control of electromechanical systems,” IEEE Trans. Autom. Control, vol. 37, pp. 524–528, 1992. p. 70–74, 1964.

    Google Scholar 

  71. S. G. Tsefastas, “Pulse width and pulse frequency modulated control systems,”in Simulation of Control Systems, I. Troch, Editor, New York: North-Holland, 1978, pp. 41–48.

    Google Scholar 

  72. P. P. Vaidyanathan and V. Liu, “An improved sufficient condition for absence of limit cycles in digital filters,” IEEE Trans. Circ. Syst., vol. CAS-34, pp. 319–322, Mar. 1987

    Article  Google Scholar 

  73. V. A. Yacubovich, “Solution of certain matrix inequalities encountered in nonlinear control theory,” Soviet Math. Doklady, vol. 5, pp. 652–666, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Boston

About this chapter

Cite this chapter

Michel, A.N., Hou, L., Liu, D. (2008). Applications to Finite-Dimensional Dynamical Systems. In: Stability of Dynamical Systems. Systems&Control: Foundations&Applications. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4649-3_8

Download citation

Publish with us

Policies and ethics