Finite-Dimensional Dynamical Systems

  • Anthony N. Michel
  • Ling Hou
  • Derong Liu
Part of the Systems&Control: Foundations&Applications book series (SCFA)


Ordinary Differential Equation Lyapunov Function Exponential Stability Uniform Boundedness Uniform Stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods, and Applications, New York: Marcel Dekker, 1992.MATHGoogle Scholar
  2. 2.
    P. J. Antsaklis and A. N. Michel, Linear Systems, Boston: Birkhäauser, 2005.Google Scholar
  3. 3.
    S. P. Gordon, “On converse to the stability theorems for difference equations,” SIAM J. Control Optim., vol. 10, pp. 76–81, 1972.MATHCrossRefGoogle Scholar
  4. 4.
    W. Hahn, Stability of Motion, Berlin: Springer-Verlag, 1967.MATHGoogle Scholar
  5. 5.
    J. K. Hale, Ordinary Differential Equations, New York: Wiley-Interscience, 1969.MATHGoogle Scholar
  6. 6.
    Z. P. Jiang and Y.Wang, “A converse Lyapunov theorem for discrete-time systems with disturbances,” Syst. Control Lett., vol. 45, pp. 49–58, 2002.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    H. K. Khalil, Nonlinear Systems, New York: Macmillan, 1992.MATHGoogle Scholar
  8. 8.
    N. N. Krasovskii, Stability of Motion, Stanford, CA: Stanford University Press, 1963.MATHGoogle Scholar
  9. 9.
    V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, vol. I and II, New York: Academic Press, 1969.Google Scholar
  10. 10.
    V. Lakshmikantham and D. Trigiante, Theory of Difference Equations: Numerical Methods and Applications, New York: Marcel Dekker, 1988.MATHGoogle Scholar
  11. 11.
    J. P. LaSalle, The Stability and Control of Discrete Processes, New York: Springer-Verlag, 1986.MATHGoogle Scholar
  12. 12.
    A. M. Liapounoff, “Problème générale de la stabilité de mouvement,” Annales de la Faculté des Sciences de l’Université de Toulouse, vol. 9, pp. 203–474, 1907. (Translation of a paper published in Comm. Soc. Math., Kharkow, 1892, reprinted in Ann. Math. Studies, vol. 17, Princeton, NJ: Princeton, 1949.)Google Scholar
  13. 13.
    I. G. Malkin, “On the question of the reciprocal of Lyapunov’s theorem on asymptotic stability,” Prikl. Mat. Mekh., vol. 18, pp. 129–138, 1954.MATHMathSciNetGoogle Scholar
  14. 14.
    J. L. Massera, “Contributions to stability theory,” Ann. Math., vol. 64, pp. 182–206, 1956.CrossRefMathSciNetGoogle Scholar
  15. 15.
    A. N. Michel, “Recent trends in the stability analysis of hybrid dynamical systems,”IEEE Trans. Circ. Syst. – Part I: Fund. Theor. Appl., vol. 46, pp. 120–134, 1999.MATHCrossRefGoogle Scholar
  16. 16.
    A. N. Michel and C. J. Herget, Algebra and Analysis for Engineers and Scientists, Boston: Birkhäauser, 2007.Google Scholar
  17. 17.
    A. N. Michel and B. Hu, “Towards a stability theory of general hybrid dynamical systems,” Automatica, vol. 35, pp. 371–384, 1999.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    A. N. Michel, K.Wang, and B. Hu, Qualitative Theory of Dynamical Systems – The Role of Stability Preserving Mappings, Second Edition, New York: Marcel Dekker, 2001.MATHGoogle Scholar
  19. 19.
    R. K. Miller and A. N. Michel, Ordinary Differential Equations, New York: Academic Press, 1982.MATHGoogle Scholar
  20. 20.
    M.Vidyasagar, Nonlinear Systems Analysis, Second Edition, Englewood Cliffs,NJ: Prentice-Hall, 1993.Google Scholar
  21. 21.
    H. Ye, A. N. Michel, and L. Hou, “Stability theory for hybrid dynamical systems,” IEEE Trans. Autom. Control, vol. 43, pp. 461–474, 1998.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    T. Yoshizawa, Stability Theory by Liapinov’s Second Method, Tokyo: Math. Soc. of Japan, 1966.Google Scholar
  23. 23.
    V. I. Zubov, Methods of A. M. Lyapunov and Their Applications, Amsterdam: Noordhoff, 1964.Google Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • Anthony N. Michel
    • 1
  • Ling Hou
    • 2
  • Derong Liu
    • 3
  1. 1.Department of Electrical EngineeringUniversity of Notre DameNotre DameU.S.A
  2. 2.Department of Electrical and Computer EngineeringSt. Cloud State UniversitySt. CloudU.S.A
  3. 3.Department of Electrical and Computer EngineeringUniversity of Illinois at ChicagoChicagoU.S.A

Personalised recommendations