Advertisement

Dynamical Systems

  • Anthony N. Michel
  • Ling Hou
  • Derong Liu
Part of the Systems&Control: Foundations&Applications book series (SCFA)

Keywords

Banach Space Prove Theorem Differential Inclusion Functional Differential Equation Nonlinear Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    J. P. Aubin and A. Cellina, Differential Inclusions, New York: Springer-Verlag, 1984.MATHGoogle Scholar
  2. 2.
    D. D. Bainov and P. S. Simeonov, Systems with Impulse Effects: Stability Theory and Applications, New York: Halsted Press, 1989.MATHGoogle Scholar
  3. 3.
    V. Barbu and S. I. Grossman, “Asymptotic behavior of linear integrodifferential systems,” Trans. Amer. Math. Soc., vol. 171, pp. 277–288, 1972.CrossRefMathSciNetGoogle Scholar
  4. 4.
    R. Bellman and K. L. Cooke, Differential-Difference Equations, New York: Academic Press, 1963.MATHGoogle Scholar
  5. 5.
    H. Brezis, Operateurs Maximaux Monotones, Amsterdam: North-Holland, 1973.MATHGoogle Scholar
  6. 6.
    R.W. Brockett, “Hybrid models for motion control systems,” Essays on Control Perspectives in the Theory and Its Applications, H. L. Trentelman and J. C. Willems, Eds., Boston: Birkhäauser, pp. 29–53, 1993.Google Scholar
  7. 7.
    B. Brogliato, S. I. Niculescu, and P. Orhant, “On the control of finite-dimensional systems with unilateral constraints,” IEEE Trans. Autom. Control, vol. 42, pp. 200–215, 1997.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. G. Crandall, “Semigroups of nonlinear transformations on general Banach spaces,” Contributions to Nonlinear Functional Analysis, E. H. Zarantonello, Ed., New York: Academic Press, 1971.Google Scholar
  9. 9.
    M. G. Crandall and T. M. Liggett, “Generation of semigroups of nonlinear transformations on general Banach spaces,” Amer. J. Math., vol. 93, pp. 265–298, 1971.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    R. DeCarlo, S. Branicky, S. Pettersson, and B. Lennartson, “Perspectives and results on the stability and stabilizability of hybrid systems,” Proc. IEEE, vol. 88, pp. 1069–1082, 2000.CrossRefGoogle Scholar
  11. 11.
    J. Dieudonné, Foundations of Modern Analysis, New York: Academic Press, 1960.MATHGoogle Scholar
  12. 12.
    N. Dunford and J. T. Schwarz, Linear Operators, Part I, New York: Wiley, 1958.Google Scholar
  13. 13.
    G. F. Franklin and J. D. Powell, Digital Control of Dynamical Systems, Reading, MA: Addison-Wesley, 1980.Google Scholar
  14. 14.
    A. Friedman, Partial Differential Equations of the Parabolic Type, Englewood Cliffs, NJ: Prentice Hall, 1964.Google Scholar
  15. 15.
    A. N. Godunov, “Peano’s theorem in Banach spaces,” Functional Anal. Appl.,vol. 9, pp. 53–56, 1975.MATHCrossRefGoogle Scholar
  16. 16.
    A. Gollu and P. P. Varaiya, “Hybrid dynamical systems,” Proc. 28th IEEE Conf. on Decision and Control, Tampa, FL, Dec. 1989, pp. 2708–2712.Google Scholar
  17. 17.
    R. Grossman, A. Nerode, A. Ravn, and H. Rischel, Eds., Hybrid Systems, New York: Springer-Verlag, 1993.Google Scholar
  18. 18.
    W. Hahn, Stability of Motion, Berlin: Springer-Verlag, 1967.MATHGoogle Scholar
  19. 19.
    J. K. Hale, Functional Differential Equations, Berlin: Springer-Verlag, 1971.MATHGoogle Scholar
  20. 20.
    J. K. Hale, “Functional differential equations with infinite delays,” J. Math. Anal. Appl., vol. 48, pp. 276–283, 1974.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. Colloquium Publ., vol. 33, Providence, RI: American Mathematical Society, 1957.Google Scholar
  22. 22.
    L. Höormander, Linear Partial Differential Equations, Berlin: Springer-Verlag, 1963.Google Scholar
  23. 23.
    S. G. Krein, Linear Differential Equations in Banach Spaces, Translation of Mathematical Monographs, vol. 29, Providence, RI: American Mathematical Society, 1970.Google Scholar
  24. 24.
    N. V. Krylov, Nonlinear Elliptic and Parabolic Equations of the Second Order, Boston: D. Reidel, 1987.MATHGoogle Scholar
  25. 25.
    T. Kurtz, “Convergence of sequences of semigroups of nonlinear equations with applications to gas kinetics,” Trans. Amer. Math. Soc., vol. 186, pp. 259–272, 1973.CrossRefMathSciNetGoogle Scholar
  26. 26.
    V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, vol. I, II, New York: Academic Press, 1969.MATHGoogle Scholar
  27. 27.
    A. Lasota and J. A. Yorke, “The generic property of existence of solutions of differential equations in Banach space,” J. Differential Equations, vol. 13, pp. 1–12, 1973.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    D. Liberzon and A. S. Morse, “Basic problems in stability and design of switched systems,” IEEE Control Syst. Mag., vol. 19, pp. 59–70, 1999.CrossRefGoogle Scholar
  29. 29.
    A. N. Michel, “Recent trends in the stability analysis of hybrid dynamical systems,” IEEE Trans. Circ. and Syst., vol. 46, pp. 120–134, 1999.MATHCrossRefGoogle Scholar
  30. 30.
    A. N. Michel and B. Hu, “Towards a stability theory of general hybrid dynamical systems,” Automatica, vol. 35, pp. 371–384, 1999.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    A. N. Michel, and R. K. Miller, Qualitative Analysis of Large Scale Dynamical Systems, New York: Academic Press, 1977.MATHGoogle Scholar
  32. 32.
    A. N. Michel and Y. Sun, “Stability of discontinuous Cauchy problems in Banach space,” Nonlinear Anal., vol. 65, pp. 1805–1832, 2006.MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    A. N. Michel, Y. Sun, and A. P. Molchanov, “Stability analysis of discontinuous dynamical systems determined by semigroups,” IEEE Trans. Autom. Control, vol. 50, pp. 1277–1290, 2005.CrossRefMathSciNetGoogle Scholar
  34. 34.
    A. N. Michel, K.Wang, and B. Hu, Qualitative Theory of Dynamical Systems – The Role of Stability Preserving Mappings, Second Edition, New York: Marcel Dekker, 2001.MATHGoogle Scholar
  35. 35.
    A. N. Michel, K.Wang, and K. M. Passino, “Qualitative equivalence of dynamical systems with applications to discrete event systems,” Proc. of the 31st IEEE Conf. on Decision and Control, Tucson, AZ, Dec. 1992, pp. 731–736.Google Scholar
  36. 36.
    A. N. Michel, K. Wang and K. M. Passino, “Stability preserving mappings and qualitative equivalence of dynamical systems, Part I,” Avtomatika i Telemekhanika, vol. 10, pp. 3–12, 1994.MathSciNetGoogle Scholar
  37. 37.
    R. K. Miller and A. N. Michel, Ordinary Differential Equations, New York: Academic Press, 1982.MATHGoogle Scholar
  38. 38.
    A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Englewood Cliffs, NJ: Prentice Hall, 1975.MATHGoogle Scholar
  39. 39.
    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, New York: Springer-Verlag, 1963.Google Scholar
  40. 40.
    R. D. Rasmussen and A. N. Michel, “Stability of interconnected dynamical systems described on Banach spaces,” IEEE Trans. Autom. Control, vol. 21, pp. 464–471, 1976.MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    C. Rui, I. Kolmanovsky, and N. H. McClamroch, “Hybrid control for stabilization of a class of cascade nonlinear systems,” Proc. American Control Conf., Albuquerque, NM, June 1997, pp. 2800–2804.Google Scholar
  42. 42.
    M. Slemrod, “Asymptotic behavior of C0-semigroup as determined by the spectrum of the generator,” Indiana Univ. Math. J., vol. 25, pp. 783–791, 1976.CrossRefMathSciNetGoogle Scholar
  43. 43.
    Y. Sun, A. N. Michel, and G. Zhai, “ Stability of discontinuous retarded functional differential equations with applications,” IEEE Trans. Autom. Control, vol. 50, pp. 1090–1105, 2005.CrossRefMathSciNetGoogle Scholar
  44. 44.
    J. C. Willems, “Paradigms and puzzles in the theory of dynamical systems,” IEEE Trans. Autom. Control, vol. 36, pp. 259–294, 1991.MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    H. Ye, A. N. Michel, and P. J. Antsaklis “A general model for the qualitative analysis of hybrid dynamical systems,” Proc. of the 34th IEEE Conf. on Decision and Control, New Orleans, LA, Dec. 1995, pp. 1473–1477.Google Scholar
  46. 46.
    H. Ye, A. N. Michel, and L. Hou, “Stability theory for hybrid dynamical systems,” IEEE Trans. Autom. Control, vol. 43, pp. 461–474, 1998.MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    T. Yoshizawa, Stability Theory by Lyapunov’s Second Method, Math. Soc., Japan, Tokyo, 1966.Google Scholar
  48. 48.
    V. I. Zubov, Methods of A.M. Lyapunov and Their Applications, Groningen, The Netherlands: P. Noordhoff, 1964.Google Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • Anthony N. Michel
    • 1
  • Ling Hou
    • 2
  • Derong Liu
    • 3
  1. 1.Department of Electrical EngineeringUniversity of Notre DameNotre DameU.S.A
  2. 2.Department of Electrical and Computer EngineeringSt. Cloud State UniversitySt. CloudU.S.A
  3. 3.Department of Electrical and Computer EngineeringUniversity of Illinois at ChicagoChicagoU.S.A

Personalised recommendations