• Anthony N. Michel
  • Ling Hou
  • Derong Liu
Part of the Systems&Control: Foundations&Applications book series (SCFA)


Lyapunov Function Stability Theory Functional Differential Equation Continuous Dynamical System Digital Control System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Aizerman and F. R. Gantmacher, Absolute Stability of Regulator Systems, San Francisco: Holden-Day, 1964.Google Scholar
  2. 2.
    P. J. Antsaklis and A. N. Michel, Linear Systems, Boston: Birkhäuser, 2006.Google Scholar
  3. 3.
    K. J. Åström and B. Wittenmark, Adaptive Control, 2nd Edition, New York: Addison-Wesley, 1995.MATHGoogle Scholar
  4. 4.
    F. N. Bailey, “The application of Lyapunov’s Second Method to interconnected systems,” SIAM J. Control, vol. 3, pp. 443–462, 1966.CrossRefMathSciNetGoogle Scholar
  5. 5.
    D. D. Bainov and P. S. Simeonov, Systems with Impulse Effects: Stability Theory and Applications, New York: Halsted, 1989.MATHGoogle Scholar
  6. 6.
    A. E. Barbashin and N. N. Krasovskii, “On the stability of motion in the large,” Dokl. Akad. Nauk., vol. 86, pp. 453-456, 1952.MATHGoogle Scholar
  7. 7.
    V. Barbu and S. I. Grossman, “Asymptotic behavior of linear integrodifferential systems,” Trans. Amer. Math. Soc., vol. 171, pp. 277–288, 1972.CrossRefMathSciNetGoogle Scholar
  8. 8.
    R. Bellman, “Vector Lyapunov functions,” SIAM J. Control, vol. 1, pp. 32–34, 1962.CrossRefGoogle Scholar
  9. 9.
    R. Bellman and K. L. Cooke, Differential-Difference Equations, New York: Academic Press, 1963.MATHGoogle Scholar
  10. 10.
    M. S. Branicky, “Multiple Lyapunov functions and other analysis tools for switched and hybrid systems,” IEEE Trans. Autom. Control, vol. 43, pp. 475– 482, 1998.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    M. G. Crandall, “Semigroups of nonlinear transformations on general Banach spaces,” Contributions to Nonlinear Functional Analysis, E. H. Zarantonello, Ed., New York: Academic Press, 1971.Google Scholar
  12. 12.
    M. G. Crandall and T. M. Liggett, “Generation of semigroups of nonlinear transformations on general Banach spaces,” Amer. J. Math., vol. 93, pp. 265–298, 1971.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    J. L. Daleckii and S. G. Krein, Stability of Solutions of Differential Equations in Banach Spaces, Translations of Mathematical Monographs, vol. 43, Providence, RI: American Mathematical Society, 1974.Google Scholar
  14. 14.
    R. DeCarlo, M. Branicky, S. Pettersson, and B. Lennartson, “Perspectives and results on the stability and stabilizability of hybrid systems,” Proc. IEEE, vol.88, pp. 1069–1082, 2000.CrossRefGoogle Scholar
  15. 15.
    G. F. Franklin and J. D. Powell, Digital Control of Dynamical Systems, Reading,MA: Addison-Wesley, 1980.Google Scholar
  16. 16.
    A. Friedman, Partial Differential Equations of Parabolic Type, Englewood Cliffs, NJ: Prentice Hall, 1964.MATHGoogle Scholar
  17. 17.
    P. R. Garabedian, Partial Differential Equations, New York: Chelsea, 1986.Google Scholar
  18. 18.
    L. T. Grujic, A. A. Martynyuk, and M. Ribbens-Pavella, Large Scale Systems Stability Under Structural and Singular Perturbations, Berlin: Springer-Verlag, 1987.MATHGoogle Scholar
  19. 19.
    W. M. Haddad, V. S. Chellaboina, and S. G. Nersesov, Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity and Control, Princeton, NJ: Princeton University Press, 2006.MATHGoogle Scholar
  20. 20.
    W. Hahn, Theorie und Anwendung der direkten Methode von Ljapunov, Heidelberg: Springer-Verlag, 1959.MATHGoogle Scholar
  21. 21.
    W. Hahn, Stability of Motion, Berlin: Springer-Verlag, 1967.MATHGoogle Scholar
  22. 22.
    A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, New York: Academic Press, 1966.MATHGoogle Scholar
  23. 23.
    J. K. Hale, Ordinary Differential Equations, New York: Wiley-Interscience, 1969.MATHGoogle Scholar
  24. 24.
    J. K. Hale, Functional Differential Equations, Berlin: Springer-Verlag, 1971.MATHGoogle Scholar
  25. 25.
    J. K. Hale, “Functional differential equations with infinite delays,” J. Math. Anal. Appl., vol. 48, pp. 276–283, 1974.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. Colloquium Publ. vol. 33, Providence, RI:American Mathematical Society, 1957.Google Scholar
  27. 27.
    L. Hörmander, Linear Partial Differential Equations, Berlin: Springer-Verlag, 1963Google Scholar
  28. 28.
    L. Hörmander, The Analysis of Linear Partial Differential Operators, vol. 1, 2,3,4, Berlin: Springer-Verlag, 1983–1985.Google Scholar
  29. 29.
    L. Hou and A. N. Michel, “Stability analysis of pulse-width-modulated feedback systems,” Automatica, vol. 37, pp. 1335–1349, 2001.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    L. Hou, A. N. Michel, and H. Ye, “Some qualitative properties of sampled-data control systems,” IEEE Trans. Autom. Control, vol. 42, pp. 1721–1725, 1997.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    P. A. Ioannou and J. Sun, Robust Adaptive Control, Upper Saddle River, NJ: Prentice Hall, 1996.MATHGoogle Scholar
  32. 32.
    R. E. Kalman, “Lyapunov functions for the problem of Luré in automatic control,” Proc. Nat. Acad. Sci. USA, vol. 49, pp. 201–205, 1963.MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    E. Kamke, “Zur Theorie der Systeme gewöhnlicher Differentialgleichungen, II,” Acta Math., vol. 58, pp. 57–85, 1932.CrossRefMathSciNetGoogle Scholar
  34. 34.
    H. K. Khalil, Nonlinear Systems, New York: Macmillan, 1992.MATHGoogle Scholar
  35. 35.
    N. N. Krasovskii, Stability of Motion, Stanford, CA: Stanford University Press, 1963.MATHGoogle Scholar
  36. 36.
    S. G. Krein, Linear Differential Equations in Banach Spaces, Translation of Mathematical Monographs, vol. 29, Providence, RI: American Mathematical Society, 1970.Google Scholar
  37. 37.
    V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, vol. 1 and 2, New York: Academic Press, 1969.Google Scholar
  38. 38.
    J. P. LaSalle, “The extent of asymptotic stability,” Proc. Nat. Acad. Sci., vol. 48, pp. 363–365, 1960.CrossRefMathSciNetGoogle Scholar
  39. 39.
    J. P. LaSalle, “Some extensions of Liapunov’s Second Method,” IRE Trans. Circ. Theor., vol. 7, pp. 520–527, 1960.MathSciNetGoogle Scholar
  40. 40.
    J. P. LaSalle, The Stability and Control of Discrete Processes, New York: Springer-Verlag, 1986.MATHGoogle Scholar
  41. 41.
    J. P. LaSalle and S. Lefschetz, Stability of Lyapunov’s Direct Method, NewYork:Academic Press, 1961.Google Scholar
  42. 42.
    S. Lefschetz, Stability of Nonlinear Control Systems, New York: Academic Press, 1965.MATHGoogle Scholar
  43. 43.
    D. Liberzon and A. S. Morse, “Basic problems in stability and design of switched systems,” IEEE Control Syst. Mag., vol. 19, pp. 59–70, 1999.CrossRefGoogle Scholar
  44. 44.
    A. I. Luré and V. N. Postnikov, “On the theory of stability of control systems,” Prikl. Mat. i. Mehk., vol. 8, pp. 3–13, 1944.Google Scholar
  45. 45.
    A. M. Liapounoff, “Problème générale de la stabilité de mouvement,” Annales de la Faculté des Sciences de l’Université de Toulouse, vol. 9, pp. 203–474, 1907. (Translation of a paper published in Comm. Soc. Math., Kharkow, 1892, reprinted in Ann. Math. Studies, vol. 17, Princeton, NJ: Princeton, 1949. The French version was translated into English by A. T. Fuller, and was published in the International Journal of Control, vol. 55, pp. 531–773, 1992.)Google Scholar
  46. 46.
    I. G. Malkin, “On the question of reversibility of Lyapunov’s theorem on automatic stability,” Prikl. Mat. i Mehk., vol.18, pp. 129–138, 1954 (in Russian).MATHGoogle Scholar
  47. 47.
    J. L. Massera, “On Liapunoff’s conditions of stability,” Ann. Mat., vol. 50, pp. 705–721, 1949.CrossRefMathSciNetGoogle Scholar
  48. 48.
    J. L. Massera, “Contributions to stability theory,” Ann. Mat., vol. 64, pp. 182–206, 1956.CrossRefMathSciNetGoogle Scholar
  49. 49.
    V. M. Matrosov, “The method of Lyapunov-vector functions in feedback systems,” Automat. Remote Control, vol. 33, pp. 1458–1469, 1972.MATHMathSciNetGoogle Scholar
  50. 50.
    A. N. Michel, “Recent trends in the stability analysis of hybrid dynamical systems,” IEEE Trans. Circ. and Syst.–I: Fund. Theor. Appl., vol. 46, pp. 120–134, 1999.MATHCrossRefGoogle Scholar
  51. 51.
    A. N. Michel and B. Hu, “Towards a stability theory of general hybrid dynamical systems,” Automatica, vol. 35, pp. 371–384, 1999.MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    A. N. Michel and D. Liu, Qualitative Analysis and Synthesis of Recurrent Neural Networks, New York: Marcel Dekker, 2002.MATHGoogle Scholar
  53. 53.
    A. N. Michel and R. K. Miller, Qualitative Analysis of Large Scale Dynamical Systems, New York: Academic Press, 1977.MATHGoogle Scholar
  54. 54.
    A. N. Michel and Y. Sun, “Stability of discontinuous Cauchy problems in Banach space,” Nonlinear Anal., vol. 65, pp. 1805–1832, 2006.MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    A. N. Michel, Y. Sun, and A. P. Molchanov, “Stability analysis of discontinuous dynamical systems determined by semigroups,” IEEE Trans. Autom. Control, vol. 50, pp. 1277–1290, 2005.CrossRefMathSciNetGoogle Scholar
  56. 56.
    A. N. Michel and K.Wang, “Robust stability: perturbed systems with perturbed equilibria,” Syst. and Control Lett., vol. 21, pp. 155–162, 1993.MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    A. N. Michel, K. Wang, and B. Hu, Qualitative Theory of Dynamical Systems: The Role of Stability Preserving Mappings, 2nd Edition, New York: Marcel Dekker, 2001.MATHGoogle Scholar
  58. 58.
    R. K. Miller, Nonlinear Volterra Integral Equations, Menlo Park, CA: W. A. Benjamin, 1971.MATHGoogle Scholar
  59. 59.
    R. K. Miller and A. N. Michel, Ordinary Differential Equations, New York: Academic Press, 1982.MATHGoogle Scholar
  60. 60.
    M. Müller, “Über das Fundamentaltheorem in der Theorie der gewöhnlichen Differentialgleichungen,” Mat. Zeit., vol. 26, pp. 615–645, 1926.Google Scholar
  61. 61.
    K. S. Narendra and J. H. Taylor, Frequency Domain Stability for Absolute Stability, New York: Academic Press, 1973.MATHGoogle Scholar
  62. 62.
    M. A. Pai, Power System Stability, New York: North-Holland, 1981.MATHGoogle Scholar
  63. 63.
    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, New York: Springer-Verlag, 1983.MATHGoogle Scholar
  64. 64.
    V. M. Popov, “Absolute stability of nonlinear systems of automatic control,” Automation Remote Control, vol. 22, pp. 857–875, 1961.MATHGoogle Scholar
  65. 65.
    G. R. Sell, Lectures on Topological Dynamics and Differential Equations, Princeton, NJ: Van Nostrand, 1969.Google Scholar
  66. 66.
    D. D. Siljak, Large-Scale Dynamical Systems: Stability and Structure, New York: North Holland, 1978.Google Scholar
  67. 67.
    Y. Sun, A. N. Michel, and G. Zhai, “Stability of discontinuous retarded functional differential equations with applications,” IEEE Trans. Autom. Control, vol. 50, pp. 1090–1105, 2005.CrossRefMathSciNetGoogle Scholar
  68. 68.
    M.Vidyasagar, Nonlinear Systems Analysis, 2nd Edition, Englewood Cliffs, NJ: Prentice Hall, 1993.MATHGoogle Scholar
  69. 69.
    W.Walter, Differential and Integral Inequalities, Berlin: Springer-Verlag, 1970.MATHGoogle Scholar
  70. 70.
    K. Wang and A. N. Michel, “On sufficient conditions for stability of interval matrices,” Syst. Control Lett., vol. 20, pp. 345–351, 1993.MATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    K. Wang and A. N. Michel, “Qualitative analysis of dynamical systems determined by differential inequalities with applications to robust stability,” IEEE Trans. Circ. Syst.–I: Fund. Theor. Appl., vol. 41, pp. 377–386, 1994.MATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    K.Wang, A. N. Michel, and D. Liu, “Necessary and sufficient conditions for the Hurwitz and Schur stability of interval matrices,” IEEE Trans. Autom. Control, vol. 39, pp. 1251–1255, 1996.CrossRefMathSciNetGoogle Scholar
  73. 73.
    T.Wazewski, “Systemés des equations et des inégalités différentielles ordinaires aux deuxiémes membres monotones et leurs applications,” Ann. Soc. Poln. Mat., vol. 23, pp. 112–166, 1950.MATHMathSciNetGoogle Scholar
  74. 74.
    V.A.Yacubovich, “Solution of certain matrix inequalities occurring in the theory of automatic control,” Dokl. Acad. Nauk. SSSR, pp. 1304–1307, 1962.Google Scholar
  75. 75.
    H. Ye, A. N. Michel, and L. Hou, “Stability theory for hybrid dynamical systems,” IEEE Trans. Autom. Control, vol. 43, pp. 461–474, 1998.MATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    H. Ye, A. N. Michel, and L. Hou, “Stability analysis of systems with impulse effects,” IEEE Trans. Autom. Control, vol. 43, pp. 1719–1923, 1998.MATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    H. Ye, A. N. Michel, and K. Wang, “Robust stability of nonlinear time-delay systems with applications to neural networks,” IEEE Trans. Circ. Syst.–I: Fund. Theor. Appl., vol. 43, pp. 532–543, 1996.CrossRefMathSciNetGoogle Scholar
  78. 78.
    T. Yoshizawa, Stability Theory by Lyapunov’s Second Method, Tokyo: Math. Soc. Japan, 1966.Google Scholar
  79. 79.
    G. Zames, “Input-output feedback stability and robustness, 1959–85,” IEEE Control Syst. Mag., vol. 16, pp. 61–66, 1996.CrossRefGoogle Scholar
  80. 80.
    V. I. Zubov, Methods of A. M. Lyapunov and Their Applications, Groningen, The Netherlands: P. Noordhoff, 1964.Google Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • Anthony N. Michel
    • 1
  • Ling Hou
    • 2
  • Derong Liu
    • 3
  1. 1.Department of Electrical EngineeringUniversity of Notre DameNotre DameU.S.A
  2. 2.Department of Electrical and Computer EngineeringSt. Cloud State UniversitySt. CloudU.S.A
  3. 3.Department of Electrical and Computer EngineeringUniversity of Illinois at ChicagoChicagoU.S.A

Personalised recommendations