Precessions and Gyroscopes

Part of the Cornerstones book series (COR)


Let \(\{\mathcal{M};d\mu \}\)be a rigid system in precession abouta pole O. Introduce a fixed inertial triad Σ and a moving triad S, both with originat O, so that S is in rigid motion with respect to Σ with angular characteristic ω. The latter is the unknown of the motion.The system is acted upon by external forcesthat generate a resultant moment M (e)with respect to the pole O. The constraint that keeps O fixed and other possible constraintsgive rise to reactions of resultant moment \(\mathcal{M}\)with respect to O. It is assumed that the moment M (e) and \(\mathcal{M}\)are known functions of ω, or equivalently of the Euler angles.


Euler Equation Rigid Motion North Pole Effect Oscillation Resultant Moment 

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsVanderbilt UniversityNashvilleUSA

Personalised recommendations