Advertisement

Pseudounitary Conformal Spin Structures

  • Pierre Anglè
Part of the Progress in Mathematical Physics book series (PMP, volume 50)

Keywords

Exact Sequence Vector Bundle Spin Structure Clifford Algebra Principal Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Albert A., Structures of Algebras, American Mathematical Society, vol. XXIV, New York, 1939.Google Scholar
  2. Anglès P., Construction de revêtements du groupe conforme d’un espace vectoriel muni d ’une métrique de type (p,q), Annales de l’I.H.P., section A, vol. XXXIII no. 1, pp. 33–51, 1980.Google Scholar
  3. Anglès P., Géométrie spinorielle conforme orthogonale triviale et groupes de spinorialité conformes, Report HTKK Mat A 195, pp. 1–36, Helsinki University of Technology, 1982.Google Scholar
  4. Anglès P., Construction de revêtements du groupe symplectique réel CSp(2r,R). Géométrie conforme symplectique réelle. Définition des structures spinorielles conformes symplectiques réelles, Simon Stevin (Gand-Belgique), vol. 60 no. 1, pp. 57–82, Mars 1986.MATHGoogle Scholar
  5. Anglès P., Algèbres de Clifford C r,s des espaces quadratiques pseudo-euclidiens standards E r,s et structures correspondantes sur les espaces de spineurs associés. Plongements naturels de quadriques projectives Q(E r,s) associés aux espaces E r,s. Nato ASI Séries vol. 183, 79–91, Clifford algebras édité par JSR Chisholm et A.K. Common D. Reidel Publishing Company, 1986.Google Scholar
  6. Anglès P., Real conformal spin structures, Scientiarum Mathematicarum Hungarica, vol. 23, pp. 115–139, Budapest, Hungary 1988.Google Scholar
  7. Anglès P., Groupes spinoriels des espaces pseudo-euclidiens standards et quadratiques projectives réelles associes, vol. 63 no. 1, pp. 3–44, Simon Stevin: a quaterly Journal of pure and applied mathematics, Gand (Belgique), 1989.MATHGoogle Scholar
  8. Anglès P., Algèbres de Clifford du groupe pseudo-unitaire U(p,q) et du groupe special symplecto-quaternionum SO* (2n), Simon Stevin, vol. 63, no. 3-4, pp. 231–276, Gand (Belgique), 1989.MathSciNetGoogle Scholar
  9. Anglès P., Etude de la trialité en signature (r, s) quelconque pour les espaces vectoriels réels standards de dimension m=r+s=2K Journal of Natural Geometry, vol. 14, pp. 1–42, The Mathematical Research Unit, London, 1998.MATHGoogle Scholar
  10. Anglès P., Pseudo-unitary conformal structures and Clifford algebras for standard pseudo-hermitian spaces, Advances in applied Clifford algebras, 14, no. 1, 1, pp. 1–33, 2004.MATHCrossRefMathSciNetGoogle Scholar
  11. Anglès P. and R. L. Clerc, Operateurs de c’reation et d’annihilation et algèbres de Clifford, Ann. Fondation Louis de Broglie, vol. 28, no. 1, pp. 1–26, 2003.Google Scholar
  12. Artin E., Geometric Algebra, Interscience, 1954; or in French, Algèbre géométrique, Gauthier Villars, Paris, 1972.Google Scholar
  13. Atiyah M. F., R. Bott, and A. Shapiro, Clifford Modules, Topology, vol 3, pp. 3–38, 1964.MathSciNetGoogle Scholar
  14. Avis S. and C.I. Isham, Generalized spin structures on four dimensional space-times, Communications in Mathematical Physics, vol. 72, no. 2, pp. 103–118, 1980.CrossRefMathSciNetGoogle Scholar
  15. BarthW., Moduli of vector bundles on the projective plane, Inventiones mathematicae, vol. 42, pp. 63–91, 1977.Google Scholar
  16. Besse A.L., Manifolds all of whose geodesics are closed, Springer-Verlag, NewYork, 1978.MATHGoogle Scholar
  17. Bott R., Homogeneous vector bundles, Annals of Mathematics, vol. 1, no. 2, pp. 203– 248, 1957.CrossRefMathSciNetGoogle Scholar
  18. Bourbaki N., Eléments de Mathématiques. Chap. 9: Formes sesquilinaires et quadratiques, Livre II, Hermann, Paris, 1959.Google Scholar
  19. Cartan E., The theory of Spinors, Hermann, Paris, 1966.MATHGoogle Scholar
  20. Cartan E., Sur les propriétés topologiques des quadriques complexes, Œuvres complètes tome I vol. 2, 1227–1246.Google Scholar
  21. Chevalley C., The algebraic theory of Spinors, Columbia University Press, NewYork, 1954.MATHGoogle Scholar
  22. Chevalley C., The construction and study of certain important algebras, Math. Soc. of Japan, 1955.Google Scholar
  23. Choquet Bruhat Y., Géométrie différentielle et systèmes extérieurs, Dunod, Paris, 1968.MATHGoogle Scholar
  24. Coquereaux R. and A. Jadczyk, Geometry of multidimensional universes, vol. 90, no. 1, pp. 79–100, 1983.MATHMathSciNetGoogle Scholar
  25. Crumeyrolle A., Structures spinorielles, Ann. I.H.P., Sect.A, vol. XI, no. 1, pp. 19–55, 1964.Google Scholar
  26. CrumeyrolleA., Groupes de spinorialité, Ann. I.H.P., Sect.A, vol. XIV, no. 4, pp. 309– 323, 1971.Google Scholar
  27. Crumeyrolle A., Dérivations, formes, opérateurs usuels sur les champs spinoriels, Ann. I.H.P., Sect. A, vol. XVI, no. 3, pp. 171–202, 1972.MathSciNetGoogle Scholar
  28. Crumeyrolle A., Algèbres de Clifford et spineurs, Université Toulouse III, 1974.Google Scholar
  29. Crumeyrolle A., Fibrations spinorielles et twisteurs généralisés, Periodica Math. Hungarica, vol. 6-2, pp. 143–171, 1975.CrossRefMathSciNetGoogle Scholar
  30. Crumeyrolle A., Spin fibrations over manifolds and generalized twistors, Proceedings of Symposia in Pure Mathematics, vol. 27, pp. 53–67, 1975.Google Scholar
  31. Crumeyrolle A., Bilinéarité et géométrie affine attachées aux espaces de spineurs complexes Minkowskiens ou autres, Ann. I.H.P., Sect. A, vol. XXXIV, no. 3, pp. 351–371, 1981.MathSciNetGoogle Scholar
  32. Deheuvels R., Cours de troisième cycle à l’école polytechnique, Paris, 1966–1967.Google Scholar
  33. Deheuvels R., Formes quadratiques et groupes classiques, Presses Universitaires de France, Paris, 1980.Google Scholar
  34. Deheuvels R., Groupes conformes et algèbres de Clifford, Rend. Sem. Mat. Univers. Politech. Torino, vol. 43, 2, pp. 205–226, 1985.MathSciNetGoogle Scholar
  35. Deheuvels R., Les structures exceptionnelles en algèbre et géométrie, Preprint Paris, pp. 1–24, 1986.Google Scholar
  36. Deheuvels R., Systèmes triples et espaces symétriques, Conférence faite à l’Université Paul Sabatier de toulouse, Preprint Paris, pp. 1–25, 1987.Google Scholar
  37. Dieudonné J., Onthe structure of unitary groups I, Trans.Am. Math. Soc., 72, pp. 367– 385, 1952; II, Amer. J. Math., 75, pp. 665–678, 1953.MATHCrossRefGoogle Scholar
  38. Dieudonné J., Sur les groupes unitaires quaternioniques à 2 et 3 variables, Bull. Soc. Math., 77, pp. 195–213, 1953.MATHGoogle Scholar
  39. Dieudonné J., La géométrie des groupes classiques, Springer-Verlag, Berlin, Heidelberg, New York, 1971.MATHGoogle Scholar
  40. Dieudonné J., Sur les groupes classiques, Hermann, Paris, 1973.Google Scholar
  41. Eichler M., Ideal theorie der quadratischen formen, Abh. Math. Sem. Hamburg, Univers., 18, pp. 14–37, 1987.MathSciNetGoogle Scholar
  42. Forger M. and H. Hess, Universal metaplectic structures and geometric quantization, vol. 64, no. 3, pp. 269–278, 1979.Google Scholar
  43. Frank-Adams I., Lectures on Lie groups, W. A. Benjamin Inc., New York, 1969.Google Scholar
  44. Greub, Halperin,Vanstone, Connections, curvature and cohomology, vol. 2, Academic Press, 1972.Google Scholar
  45. Greub W. and Petry R., On the lifting of structure groups, Lecture notes in mathematics, n. 676. Differential geometrical methods in mathematical physics, Proceedings, Bonn, pp. 217–246, 1977.Google Scholar
  46. Griffiths P. and J. Haris, Principles of algebraic geometry, Wiley, New York, 1978.Google Scholar
  47. Haantjes J., Conformal representations of an ν-dimensional Euclidean space with a non definite fundamental form on itself, Nederl. Akad. Wetensch. Proc. 40, pp. 700–705, 1937.MATHGoogle Scholar
  48. Haefliger A., Sur l’extension du groupe structural d’un espace fibré, C.R. Acad. Sci., Paris, 243, pp. 558–560, 1956.MATHMathSciNetGoogle Scholar
  49. Helgason S., Differential geometry and symmetric spaces, Academic Press, NewYork and London, 1962.MATHGoogle Scholar
  50. Hermann R., Vector bundles in Mathematical Physics, vol. 1 and 2, W.A. Benjamin, Inc., New York, 1970.MATHGoogle Scholar
  51. Hermann R., Lectures in Mathematical Physics, vol. I and II, W.A. Benjamin, Inc., New York, 1970.MATHGoogle Scholar
  52. Hermann R., Spinors Clifford and Cayley algebras, Interdisciplinary Math. vol. VII, Math. Sci. Press, Brookline Ma., U.S.A., 1974.MATHGoogle Scholar
  53. Hirzebruch F., Topological methods in algebraic geometry, Springer-Verlag, Berlin, New York, 1966.MATHGoogle Scholar
  54. Husemoller D., Fibre bundles, Mc. Graw Inc., 1966.Google Scholar
  55. Jacobson N., Clifford algebras for algebras with involution of type D, Journal of Algebra I, pp. 288–301, 1964.Google Scholar
  56. Karoubi M., Algèbres de Clifford et K-théorie, Annales Scientifiques de l’E.N.S., 4o série, tome 1, pp. 14–270, 1968.MathSciNetGoogle Scholar
  57. Karoubi M., K-théorie. An introduction, Springer-Verlag, Berlin, 1978.Google Scholar
  58. Kobayashi S. and Nomizu K., Foundations of differential geometry, vol. 1, Interscience Publishers, New York, 1963.MATHGoogle Scholar
  59. Kobayashi S. and Hung-HsiWu, On holomorphic sections of certain hermitian vector bundles, Math. Ann. 189, pp. 1–4, 1970.MATHCrossRefMathSciNetGoogle Scholar
  60. Kobayashi S., Transformation groups in differential geometry, Springer-Verlag, Berlin, 1972.MATHGoogle Scholar
  61. Kobayashi S., Differential geometry of complex vector bundles, Iwanami Shoten publishers and Princeton University Press, 1987.Google Scholar
  62. Kosmann Y., Dérivées de Lie des spineurs, Thesis, Paris, 1970.Google Scholar
  63. Kostant B., Quantization and unitary representations, Lectures notes in Mathematics no. 170, Springer-Verlag, 1970.Google Scholar
  64. Kostant B., Symplectic spinors. Symperia mathematica, vol. 14, pp. 139–152, Academic Press, London, 1959.Google Scholar
  65. Lam T.Y., The algebraic theory of quadratic forms, W.A. Benjamin Inc., 1973.Google Scholar
  66. Lawson Jr. H.B. and M.L. Michelson, Clifford bundles, immersions of manifolds and the vector field problem, Journal of differential geometry, 15, pp. 237–267, 1980.MATHMathSciNetGoogle Scholar
  67. Leray J., Solutions asymptotiques et groupe symplectique, Lectures notes in Mathematics, no. 459, Springer-Verlag, Berlin, pp. 73–119.Google Scholar
  68. Libermann P. and C.M. Marle, Géométrie symplectique. bases théoriques de la Mécanique, vol. I, Publications Mathématiques de l’Université Paris VII, Paris, 1986.MATHGoogle Scholar
  69. Lichnerowicz A., Géométrie des groupes de transformation, Dunod, Paris, 1958.Google Scholar
  70. LichnerowiczA., Théorie globale des connexions et des groupes d’holonomie, Edition Cremonese, Rome, 1962.Google Scholar
  71. LichnerowiczA., Champs spinoriels et propagateurs en relativité générale, Bull. Soc. Math. France, 92, pp. 11–100, 1964.Google Scholar
  72. Lichnerowicz A., Champ de Dirac, champ du neutrino et transformation C.P.T. sur un espace-temps courbe, Ann. I.H.P. Sect. A (N.S.) 1, pp. 233–290, 1964.MathSciNetGoogle Scholar
  73. Lichnerowicz A., Cours du Collège de France, ronéotypé non publié, 1963–1964.Google Scholar
  74. Loos O., Symmetric spaces, vol. I and II, W.A. Benjamin, Inc., New York, 1969.MATHGoogle Scholar
  75. Lounesto P., Spinor valued regular functions in hypercomplex analysis, Thesis, Report HTKK-Math-A 154, Helsinki University of Technology, 1–79, 1979.Google Scholar
  76. Lounesto P., Clifford algebras and spinors, second edition, Cambridge University Press, 2001.Google Scholar
  77. Malliavin P., Géométrie différentielle intrinsèque, Hermann, Paris, 1972.MATHGoogle Scholar
  78. Michelson M.L., Clifford and spinor cohomology, American Journal of Mathematics, vol. 106, no. 6, pp. 1083–1146, 1980.CrossRefGoogle Scholar
  79. Milnor J., Spin structure on manifolds, Enseignement 1 mathématique, Genève, 2o série 9, pp. 198–203, 1963.MATHMathSciNetGoogle Scholar
  80. Naimack N.A., Normed algebras, Woltas-Noordhoff Publishing Groningen, the Netherlands, 1972.Google Scholar
  81. Nordon J., Les éléments d’homologie des quadriques et des hyperquadriques, Bulletin de la société Mathématique de France, tome 74, pp. 116–129, 1946.MATHMathSciNetGoogle Scholar
  82. O’Meara O.T., Introduction to quadratic forms, Springer-Verlag, Berlin, G⊙ttingen, Heidelberg, 1973.MATHGoogle Scholar
  83. O’Meara O.T., Symplectic groups, American Math. Society, 1978.Google Scholar
  84. Pawel, Turkowski, Classification of multidimensional space times, J.G.P., vol. 4, no. 2, pp. 119–132, 1987.MATHGoogle Scholar
  85. Porteous I.R., Topological geometry, 2nd dition, Cambridge University Press, 1981.Google Scholar
  86. Popovici I., Considération sur les structues spinorielles, Rend. Circ. Math. Palermo, 23, pp. 113–134, 1974.MathSciNetGoogle Scholar
  87. Popovici I. and A. Tortoi, Prolongement des structures spinorielles, Ann. Inst. H. Poincaré, XX, no. 1, pp. 21–39, 1974.Google Scholar
  88. Popovici I., Représentations irréductibles des fibrés de Clifford, Ann. Inst. H. Poincaré, XXV, no. 1, pp. 35–59, 1976.MathSciNetGoogle Scholar
  89. Popovici I., C.R.A.S. Paris, t. 279, série A, pp. 277–280.Google Scholar
  90. Postnikov M., Leçons de géométries- Groupes et algèbres de Lie, Trad. Française, Ed. Mir, Moscou, 1985.Google Scholar
  91. Pressley A. and G. Segal, Loop groops, Oxford Science 1 Publications, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1986.Google Scholar
  92. Ramanan S., Holomorphic vector bundles on homogeneous spaces, Topology, vol. 5, pp. 159–177.Google Scholar
  93. Satake I., Algebraic structures of symmetric domains, Iwanami Shoten publishers and Princeton University Press, 1980.Google Scholar
  94. Seip Hornix E.A.M., Clifford algebra of quadratic quaternion forms, Proc. Kon. Ned. Akad.Wet., A 70, pp. 326–363, 1965.Google Scholar
  95. Serre J.P., Applications algébriques de la cohomologie des groupes, II. Théorie des algèbres simples, Séminaire H. Cartan, E.N.S., 2 exposés 6.01, 6.09, 7.01, 7.11, 1950–1951.Google Scholar
  96. Simms D.J., Lie groups and quantum mechanics, Lectures notes in Mathematics, no. 52, Springer-Verlag, Berlin.Google Scholar
  97. Simms D.J. and N.M.Woodhouse, Lectures on geometric quantization, Lectures notes in Physics, no. 53, Springer-Verlag, Berlin.Google Scholar
  98. Steenrod N., The topology of fiber bundles, Princeton University Press, New Jersey, 1951.Google Scholar
  99. Sternberg S., Lectures on differential geometry, P. Hall, New York, 1965.Google Scholar
  100. Tits J., Formes quadratiques. Groupes orthogonaux et algèebres de Clifford, Inventiones Math. 5, 1968, pp. 19–41.MATHCrossRefMathSciNetGoogle Scholar
  101. TrautmanA. and P. Budinich An introduction to the spinorial chessboard, J.G.P., no. 4, pp. 361–390, 1987.Google Scholar
  102. Trautman A. and P. Budinich The Spinorial chessboard, Trieste Notes in Physics, Springer-Verlag, 1988.Google Scholar
  103. Tuynman G.H. and W.A.I.I. Wiegerinck, Central extensions and physics, I.G.P., vol. 4, no. 2, pp. 207–258, 1987.MATHMathSciNetGoogle Scholar
  104. Van Drooge D.C., Spinor theory of quadratic quaternion forms, Proc. Kon. Ned. Akad.Wet., A 70, pp. 487–523, 1967.Google Scholar
  105. Wall C.E., The structure of a unitary factor group, Publication I.H.E.S., no. 1, pp. 1–23, 1959.Google Scholar
  106. Weil A., Algebras with involutions and the classical groups, Collected papers, vol. II, pp. 413–447, 1951–1964; reprinted by permission of the editors of Journal of Ind. Math. Soc., Springer-Verlag, New York, 1980.Google Scholar
  107. Wolf J., On the classification of hermitian symmetric spaces, Journal of Math. and Mechanics, vol. 13, pp. 489–496, 1964.Google Scholar
  108. Woodhouse N., Geometric quantization, Clarendon Press, Oxford, 1980.MATHGoogle Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • Pierre Anglè
    • 1
  1. 1.Laboratoire Emile Picard Institut de Mathématiques de ToulouseUniversité Paul SabatierFrance

Personalised recommendations