Three schools of mathematical research flourished simultaneously at the University of Turin in the 1890s. The group gathered around Corrado Segre was a focal point for scholars of algebraic geometry throughout Europe. The Peano school made important contributions to analysis, logic, foundations, linguistics, and teaching. Vito Volterra and his colleagues in mathematical physics explored the dependence of the calculus of variations on functional analysis, and practical applications of integral and integro-differential equations. Pieri was active in the Segre and Peano schools; his work has been characterized as exemplifying the themes and research goals of both.1 This chapter provides a summary of Pieri’s results in foundations of geometry, in the context of the Peano school. His association with Segre’s group will be discussed in the third book of the present series.


Distinct Point Euclidean Geometry Projective Geometry Extended Plane Present Book 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Boston 2007

Personalised recommendations