Recent Progress on the Global Well-Posedness of the KPI Equation

Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


In this chapter I survey the well-posedness theory for the Kadomtsev–Petviashvili (KPI) equation, culminating with the recent proof (joint with A. Ionescu and D. Tataru) of the global well-posedness of the KPI equation in two space dimensions, with data in the natural energy space.


Vries Equation Contraction Mapping Principle Mathematical Society Lecture Note Series Petviashvili Equation Numerical Harmonic Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AC]
    M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering. London Mathematical Society Lecture Note Series, 149. Cambridge University Press, London, 1991.CrossRefGoogle Scholar
  2. [B]
    J. Bourgain, On the Cauchy problem for the Kadomtsev–Petviashvili equation. Geom. Funct. Anal., 3 (1993), no. 4, 315–341.CrossRefMATHMathSciNetGoogle Scholar
  3. [CCT]
    M. Christ, J. Colliander, and T. Tao, A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order, to appear, Jour. of Funct. Anal.Google Scholar
  4. [HHK]
    M. Hadac, S. Herr, and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, preprint, arXiv:0708.2011v1, math.A.P.Google Scholar
  5. [IKT]
    A. Ionescu, C. Kenig, and D. Tataru, Global well posedness of the KP-I initial value problem in the energy space, to appear, Invent. Math.Google Scholar
  6. [IN]
    R. J. Iorio and W. V. Nunes, On equations of KP-type. Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 4, 725–743.CrossRefMATHMathSciNetGoogle Scholar
  7. [KP]
    B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl., 15 (1970), 539–541.MATHGoogle Scholar
  8. [K1]
    C. E. Kenig, On the local and global well posedness theory for the KP-I equation. Ann. Inst. H. Poincaré Anal. Non Linaire, 21 (2004), no. 6, 827–838.CrossRefMATHMathSciNetGoogle Scholar
  9. [K2]
    C. E. Kenig, The well posedness of non-linear dispersive equations: some recent developments. Harmonic analysis, 53–61, Contemp. Math., 411, Amer. Math. Soc., Providence, RI, 2006.Google Scholar
  10. [KPV]
    C. E. Kenig, G. Ponce, and L. Vega, Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle. Comm. Pure Appl. Math., 46 (1993), no. 4, 527–620.CrossRefMATHMathSciNetGoogle Scholar
  11. [KZ]
    C. E. Kenig and S. N. Ziesler, Local well posedness for modified Kadomstev–Petviashvili equations. Differential Integral Equations, 18 (2005), no. 10, 1111–1146.MATHMathSciNetGoogle Scholar
  12. [KT]
    H. Koch and D. Tataru, A priori bounds for the 1 – d cubic NLS in negative Sobolev spaces, to appear IMRN.Google Scholar
  13. [KT1]
    H. Koch and N. Tzvetkov, On the local well posedness of the Benjamin–Ono equation in \(H^s ({\mathbf{R}})\). IMRN, (2003), no. 26, 1449–1464.Google Scholar
  14. [KT2]
    H. Koch and N. Tzvetkov, On finite energy solutions of the KP-I equation. Math. Z., 258 (2008), no. 1, 55–68.CrossRefMATHMathSciNetGoogle Scholar
  15. [MST1]
    L. Molinet, J.-C. Saut. and N. Tzvetkov, Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-I equation, Duke Mathematical Journal, 115, (2002), no. 2, 353–384.CrossRefMATHMathSciNetGoogle Scholar
  16. [MST2]
    L. Molinet, J.-C. Saut, and N. Tzvetkov, Global well posedness for the KP-I equation, Math. Ann., 324 (2002), 255–275.CrossRefMATHMathSciNetGoogle Scholar
  17. [MST3]
    L. Molinet, J.-C. Saut, and N. Tzvetkov, Correction: Global well posedness for the KP-I equation, Math. Ann., 328 (2004), 707–710.CrossRefMATHMathSciNetGoogle Scholar
  18. [TT]
    H. Takaoka and N. Tzvetkov, On the local regularity of the Kadomtsev-Petviashvili-II equation, IMRN (2001), 77–114.Google Scholar
  19. [U]
    S. Ukai, Local solutions of the Kadomtsev–Petviashvili equation. J. Fac. Sci. Univ. Tokyo Sect. IA Math, 36 (1989), no. 2, 193–209.MATHMathSciNetGoogle Scholar
  20. [V]
    L. Vega, El multiplicador de Shrödinger y los operadores de restriccion, Tesis Doctoral, Universidad Autónoma de Madrid, Spain, 1988.Google Scholar

Copyright information

© Birkhäuser Boston 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations