Some Aspects of Vector-Valued Singular Integrals

  • Oscar BlascoEmail author
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


Let A, B be Banach spaces and \(1 < p < \infty. \; T\) is said to be a (p, A, B)- CalderóLon–Zygmund type operator if it is of weak type (p, p), and there exist a Banach space E, a bounded bilinear map \(u: E \times A \rightarrow B,\) and a locally integrable function k from \(\mathbb{R}^n \times \mathbb{R}^n \backslash \{(x, x): x \in \mathbb{R}^n\}\) into E such that
$$T\;f(x) = \int u(k(x, y), f(y))dy$$
for every A-valued simple function f and \(x \notin \; supp \; f.\)

The study of the boundedness of such operators between spaces of vector-valued functions under the classical assumption of the kernel is established.

Given a bounded operator T from \(L_A^p (\mathbb{R}^n) \; {\rm to} \; L^p_B(\mathbb{R}^n), \; {\rm and} \; \mathcal{L}(A) \; {\rm and} \; \mathcal{L}(B)\)-valued functions b 1 and b 2, we define the commutator
$$T_{b_1,b_2}(f) = b_2T(f) - T(b_1 f)$$
for any A-valued simple function f. The boundedness of commutators of (p, A, B)- CalderöLon–Zygmund type operators and operator-valued functions in a space of bounded mean oscillation (BMO), under certain commuting properties on the couple (b 1, b 2), are also analyzed.


Banach Space Hardy Space Singular Integral Weak Type Commute Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BCP]
    Benedek, A.; Calderón, A.P.; Panzone, R. Convolution operators on Banach space valued functions. Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356–365.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [Bl1]
    Blasco, O. Hardy spaces of vector-valued functions: Duality. Trans. Amer. Math. Soc. 308 (1988), 495–507.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [Bl2]
    Blasco, O. Boundary values of functions in vector-valued Hardy spaces and geometry of Banach spaces. J. Funct. Anal. 78 (1988), 346–364.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [Bl3]
    Blasco, O. Interpolation between \(H_{B_0}^p\) and \(L_{B_1}^p\). Studia Math. 92 (1989), no. 3, 205–210.zbMATHMathSciNetGoogle Scholar
  5. [BX]
    Blasco, O.; Xu, Q. Interpolation between vector-valued Hardy spaces. J. Funct. Anal. 102 (1991), no. 2, 331–359.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [B]
    Bloom, S. A commutator theorem and weighted BMO. Trans. Amer. Math. Soc. 292 (1985), 103–122.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [Bo1]
    Bourgain, J. Some remarks on Banach spaces in which martingale differences are unconditional. Ark. Mat. 21 (1983), 163–168.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [Bo2]
    Bourgain, J. Extension of a result of Benedek, Calderón and Panzone. Ark. Mat. 22 (1984), 91–95.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [Bu1]
    Burkholder, D.L. A geometrical characterization of the Banach spaces in which martingale differences are unconditional. Ann. of Prob. 9 (1981), 997–1011.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [Bu2]
    Burkholder, D.L. A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions. Conf. Harmonic Analysis in honor of A. Zygmund, (W. Beckner, A.P. Calderón, R. Fefferman and P.W. Jones editors). Wadsworth Inc., 1981, 270–286.Google Scholar
  11. [CZ]
    Calderón, A; Zygmund, A. On the existence of certain singular integrals. Acta Math. 88 (1952), 85–139.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [C]
    Coifman R.,A real variable characterization of Hp. Studia Math. 51 (1974), 269–274.zbMATHMathSciNetGoogle Scholar
  13. [CM]
    Coifman, R.; Meyer, Y. Au-dèlá des opérateurs pseudodiffer‘entiels. Astérisque 57 (1978), Soc. Math. France, Paris.Google Scholar
  14. [CRW]
    Coifman, R.; Rochberg, R.; Weiss, G. Factorization theorems for Hardy spaces in several variables. Ann. of Math. 103 (1976), no. 2, 611–635.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [CP]
    Cruz-Uribe, D.; Pérez, C. Two-weight, weak type norm inequalities for fractional integrals, Calderón–Zygmund operators and commutators. Indiana Univ. Math. J. 49 (2000), no. 2, 697–721.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [D]
    Duoandikoetxea, J. Fourier Analysis. Graduate Studies in Mathematics, 29. American Mathematical Society, Providence, RI, 2001.Google Scholar
  17. [FS]
    Fefferman C.; Stein E. M.,Hp spaces of several variables. Acta Math. 129 (1972), 137–193.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [GMT]
    García–Cuerva, J.; Macías, R.; Torrea, J.L. The Hardy–Littlewood property of Banach lattices. Israel J. Math. 83 (1993), no. 1–2, 177–201.CrossRefzbMATHMathSciNetGoogle Scholar
  19. [GMT2]
    García–Cuerva, J.; Macías, R. A.; Torrea, J.L. Maximal operators and B.M.O. for Banach lattices. Proc. Edinburgh Math. Soc. (2) 41 (1998), no. 3, 585–609.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [GR]
    García-Cuerva, J.; Rubio de Francia, J.L. Weighted norm inequalities and related topics. North-Holland, Amsterdam, 1985.zbMATHGoogle Scholar
  21. [HMST]
    Harboure, E.; Macías, R. A.; Segovia, C.; Torrea, J. L. Some estimates for maximal functions on Köthe function spaces. Israel J. Math. 90 (1995), no. 1–3, 349–371.CrossRefzbMATHMathSciNetGoogle Scholar
  22. [HST]
    Harboure, E., Segovia, C., Torrea, J.L. Boundedness of commutators of fractional and singular integrals for the extreme values of p, Illinois J. Math. 41 no. 4 (1997), 676–700.MathSciNetGoogle Scholar
  23. [H]
    Hörmander, L.Estimates for translation invariant operators in Lp spaces. Acta Math. 104 (1960), 93–140.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [J]
    Journé, J.L. Calderón–Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón. Lecture Notes 994 Springer-Verlag, Berlin, 1983.Google Scholar
  25. [P1]
    Pérez, C. Endpoint estimates for commutators of singular integral operators. J. Funct. Anal. 128 (1995), 163–185.CrossRefzbMATHMathSciNetGoogle Scholar
  26. [PP]
    Pérez, C.; Pradolini, G. Sharp weighted endpoint estimates for commutators of singular integrals. Michigan Math. J. 49 (2001), no. 1, 23–37.CrossRefzbMATHMathSciNetGoogle Scholar
  27. [PT2]
    Pérez, C.; Trujillo-González, R. Sharp weighted estimates for vector-valued singular integral operators and commutators. Tohoku Math. J. (2) 55 (2003), no. 1, 109–129.CrossRefzbMATHMathSciNetGoogle Scholar
  28. [RRT]
    Rubio de Francia, J.L.; Ruiz, F.; Torrea, J.L. Calderó–Zygmund theory for vector-valued functions. Adv. in Math. 62 (1986), 7–48.CrossRefzbMATHMathSciNetGoogle Scholar
  29. [ST1]
    Segovia, C.; Torrea, J.L. Vector-valued commutators and applications. Indiana Univ. Math. J. 38 (1989), no. 4, 959–971.CrossRefzbMATHMathSciNetGoogle Scholar
  30. [ST2]
    Segovia, C.; Torrea, J.L. A note on the commutator of the Hilbert transform. Rev. Un. Mat. Argentina 35 (1989), 259–264.zbMATHMathSciNetGoogle Scholar
  31. [ST3]
    Segovia, C.; Torrea, J.L. Weighted inequalities for commutators of fractional and singular integrals. Conference on Mathematical Analysis (El Escorial, 1989). Publ. Mat. 35 (1991), no. 1, 209–235.CrossRefzbMATHMathSciNetGoogle Scholar
  32. [ST4]
    Segovia, C.; Torrea, J.L. Commutators of Littlewood–Paley sums. Ark. Mat. 31 (1993), no. 1, 117–136.CrossRefzbMATHMathSciNetGoogle Scholar
  33. [ST5]
    Segovia, C.; Torrea, J.L. Higher order commutators for vector-valued Calderón–Zygmund operators. Trans. Amer. Math. Soc. 336 (1993), no. 2, 537–556.zbMATHMathSciNetGoogle Scholar
  34. [S]
    Stein, E.M. Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, (1970).Google Scholar
  35. [SW]
    Stein E.M. and Weiss G., Introduction to Fourier Analysis on Euclidean Spaces. Princeton Univ. Press, (1971).Google Scholar

Copyright information

© Birkhäuser Boston 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversidad de ValenciaValenciaSpain

Personalised recommendations