On Monge–Ampère Type Equations and Applications

Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


This chapter contains an overview of recent results on the Monge–Ampère equation and its linearization. We also describe the reflector problem and regularity results for weak solutions.


Weak Solution Type Equation Borel Measure Regularity Theory Distribution Function Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Caf90]
    L. A. Caffarelli, Interior W 2,p estimates for solutions of the Monge–Ampère equation, Ann. of Math. 131 (1990), 135–150.CrossRefMATHMathSciNetGoogle Scholar
  2. [Caf91]
    L. A. Caffarelli, Some regularity properties of solutions of Monge–Ampère equation, Comm. Pure Appl. Math. 44 (1991), 965–969.CrossRefMATHMathSciNetGoogle Scholar
  3. [CG96]
    L. A. Caffarelli and C. E. Gutiérrez, Real analysis related to the Monge-Ampère equation, Trans. Amer. Math. Soc. 348 (1996), no. 3, 1075–1092.CrossRefMATHMathSciNetGoogle Scholar
  4. [CG97]
    L. A. Caffarelli and C. E. Gutiérrez, Properties of the solutions of the linearized Monge–Ampère equation, Amer. J. Math. 119 (1997), no. 2, 423–465.CrossRefMATHMathSciNetGoogle Scholar
  5. [CGH08]
    L. A. Caffarelli, C. E. Gutiérrez, and Q. Huang, On the regularity of reflector antennas, Ann. of Math. 167 (2008), 299–323.CrossRefMATHMathSciNetGoogle Scholar
  6. [CO94]
    L. A. Caffarelli and V. Oliker, Weak solutions of one inverse problem in geometric optics, Preprint, 1994.Google Scholar
  7. [Gio57]
    E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. 3 (1957), no. 3, 25–43.MathSciNetGoogle Scholar
  8. [Gut01]
    C. E. Gutiérrez, The Monge–Ampère equation, Birkhäuser, Boston, MA, 2001.MATHGoogle Scholar
  9. [GW98]
    P. Guan and X.-J. Wang, On a Monge–Ampère equation arising from optics, J. Differential Geometry 48 (1998), 205–222.MATHMathSciNetGoogle Scholar
  10. [KS81]
    N. V. Krylov and M. V. Safonov, A certain property of solutions of parabolic equations with measurable coefficients, Math. USSR-Izv. 16 (1981), no. 1, 151–164.CrossRefMATHGoogle Scholar
  11. [Mos61]
    J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577–591.CrossRefMATHMathSciNetGoogle Scholar
  12. [Nas58]
    J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931–954.CrossRefMATHMathSciNetGoogle Scholar
  13. [OG03]
    V. Oliker and T. Glimm, Optical design of single reflector systems and the Monge-Kantorovich mass transfer problem, J. of Math. Sciences 117 (2003), 4096–4108.CrossRefMathSciNetGoogle Scholar
  14. [Pog71]
    A. V. Pogorelov, On the regularity of generalized solutions of the equation <$>{\rm det} \left ({{\partial^2 u} \over {\partial x^i \partial x^j}} \right ) = \phi(x^1, \ldots, x^n) > 0<$>, Soviet Math. Dokl. 12 (1971), no. 5, 1436–1440.MATHMathSciNetGoogle Scholar
  15. [TW00]
    N. S. Trudinger and X.-J. Wang, The Bernstein problem for affine maximal hypersurfaces, Invent. Math. 140 (2000), 399–422.CrossRefMATHMathSciNetGoogle Scholar
  16. [Wan95]
    Some counterexamples to the regularity of Monge–Ampère equations, Proc. Amer. Math. Soc. 123 (1995), no. 3, 841–845.Google Scholar
  17. [Wan96]
    X.-J. Wang, On the design of a reflector antenna, Inverse Problems 12 (1996), 351–375.CrossRefMATHMathSciNetGoogle Scholar
  18. [Wan04]
    X.-J. Wang, On the design of a reflector antenna II, Calc. Var. Partial Differential Equations 20 (2004), no. 3, 329–341.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 2010

Authors and Affiliations

  1. 1.Department of MathematicsTemple UniversityPhiladelphiaUSA

Personalised recommendations