Finiteness Theorems and Hyperbolic Manifolds

  • A. N. Parshin
Part of the Progress in Mathematics book series (MBC, volume 88)


Let f : XS be a proper smooth holomorphic family of projective algebraic varieties. If we fix a base point s0S, then we have monodromy action of the fundamental group
$$\rho :{\pi _1}\left( {{S_1}{s_0}} \right) \to Aut{\kern 1pt} {H^p}\left( {{X_0}Z} \right)$$
where X 0 is a fiber over s 0. The following results were proved using a hyperbolic metric which was introduced by S. Kobayashi [10], [11].


Exact Sequence Conjugacy Class Fundamental Group Complex Manifold Abelian Variety 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Borel and R. Narasimhan, Uniqueness conditions for certain hobmorphic mappings, Inv. Math. 2 (1967), 247–255.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213–219.MATHMathSciNetGoogle Scholar
  3. [3]
    G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Inv. Math. 73 (1983), 349–366.CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    M. Green, Holomorphic maps to complex tori, Amer. J. Math. 100 (1978), 615–620.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    Ph. Griffiths, Pertods of integrals on algebraic manifolds. Bull. Amer. Math. Soc. 76 (1970), 228–296.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    A. Grothendieck, Un Théorème sur les Homomorphismes de Schemas Abeliens, Inv. Math. 2 (1966), 59–78.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    A. Grothendieck, Letter to G. Faltings, 27 June 1983.Google Scholar
  8. [8]
    P. Deligne, Un Théorème de Finitude pour la Monodromie, inbook “Discrete Groups in Geometry and Analysis”, Birkhäuser, Boston-Basel-Stuttgart, 1987, 1–19.Google Scholar
  9. [9]
    N. Katz and S. Lang, Finiteness theorems in geometric class field theory, l’Enseignement Mathématique 27 (1981), 285–320.MATHMathSciNetGoogle Scholar
  10. [10]
    S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, New York, 1970.MATHGoogle Scholar
  11. [11]
    S. Kobayashi, Intrinsic distances f measures and geometric function theory, Bull. Amer. Math. Soc. 82 (1976), 357–416.CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    S. Lang, Fundamentals of Diophantine Geometry, Springer, New York-Berlin-Heidelberg, 1983.CrossRefMATHGoogle Scholar
  13. [13]
    S. Lang, Hyperbolic and diophantine analysis, Bull. Amer. Math. Soc. 14 (1986), 159–205.CrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    S. Lang, Introduction to Complex Hyperbolic Spaces, Springer, New York-Berlin-Heidelberg, 1987.CrossRefMATHGoogle Scholar
  15. [15]
    J. Noguchi, Hyperbolic fibre spaces and MordelVs conjecture over function fields, Pub. Res. Inst. Math. Sci. Kyoto Univ. 21 (1985), 27–46.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    W. Parry and M. Policott, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. Math. 118 (1983), 573–591.CrossRefMATHGoogle Scholar
  17. [17]
    M. Raynaud, Around the Mordell conjecture for function fields and a conjecture of Serge Lang, Lecture Notes in Mathematics 1016 (1983), 1–19.CrossRefMathSciNetGoogle Scholar
  18. [18]
    M. G. Seidenberg and V. Ya. Lin, Finiteness theorems for the holomorphic maps, in “Encyclopedia of Mathematical Sciences,” 9, Several Complex Variables HI, Springer, Berlin-Heidelberg-New York, 1987.Google Scholar
  19. [19]
    M. G. Seidenberg, Functional analogue of the Mordell conjecture: A non-compact version, Izvestija AN SSSR, ser. matem. 53 (1989). (In Russian).Google Scholar
  20. [20]
    Y.-T. Siu, Strong rigidity for Kahler manifolds and the construction of bounded holomorphe functions, in “Discrete Groups in Geometry and Analysis,” Birkhäuser, Boston-Basel-Stuttgart, 1987, pp. 124–151.CrossRefGoogle Scholar
  21. [21]
    T. Sunada, L-functions in geometry and some applications. Lecture Notes in Mathematics 1201 (1986), 266–284.CrossRefMathSciNetGoogle Scholar
  22. [22]
    A. B. Venkov, Spectral theory of automorphic functions, Selberg zeta-function and some problems of analytic number theory and mathematical physics, Uspekhi Mathem. Nauk. 34 (1979), 69–135.MATHMathSciNetGoogle Scholar
  23. [23]
    P. Vojta, Diopkantine Approximations and Value Distribution Theory, Lecture Notes in Mathematics 1239 (1987).Google Scholar
  24. [24]
    Yu. G. Zarhin and A. N. Parshin, Fmiteness theorems in diophantine geometry, an appendix to Russian edition of [12], Moscow, 1986, 369–438. (English translation by the AMS to appear).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • A. N. Parshin
    • 1
  1. 1.Steklov Mathematical InstituteAcademy of Sciences of USSRMoscow GSP-1USSR

Personalised recommendations