Linear Simple Lie Algebras and Ranks of Operators

  • Yu. G. Zarhin
Part of the Progress in Mathematics book series (MBC, volume 88)


We discuss spectra of operators in irreducible finite-dimensional representations of simple Lie algebras. We give lower bounds for the rank of non-zero operators in the representations.


Weyl Group Simple Root Vector Subspace Coxeter Number Finite Linear Group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Bourbaki, Groups et algèbres de Lie, Chapitres 4, 5, 6, Hermann, Paris, 1968.Google Scholar
  2. [2]
    N. Bourbaki, Groupes et algèbres de Lie, Chapitres 7, 8, Hermann, Paris, 1975.MATHGoogle Scholar
  3. [3]
    V. Guillemin, D. Quillen, S. Sternberg, The classification of the irreducible complex algebras of infinite type, J. Analyse Math. 18 (1967), 107–112.CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    B. Kostant, The characterization of classical groups, Duke Math. J. 25 (1958), 107–123.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    T. A. Springer, Jordan algebras and algebraic groups. Springer-Verlag, Heidelberg, 1973.CrossRefMATHGoogle Scholar
  6. [6]
    Yu. G. Zarhin, Weights of simple Lie algebras in the cohomology of algebraic varieties, Math USSR Izvestija 24 (1985), 245–282.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Yu. G. Zarhin
    • 1
  1. 1.Research Computing Center USSRAcademy of SciencesMoscowUSSR

Personalised recommendations