Some Algebras Associated to Automorphisms of Elliptic Curves

  • Michael Artin
  • John Tate
  • M. Van den Bergh
Part of the Progress in Mathematics book series (MBC)


The main object of this paper is to relate a certain type of graded algebra, namely the regular algebras of dimension 3, to automorphisms of elliptic curves. Some of the results were announced in [V]. A graded algebra A is called regular if it has finite global dimension, polynomial growth, and is Gorenstein. The precise definitions are reviewed in Section 2. As was shown in [A-S], there are two basic possibilities for a regular algebra A of (global) dimension 3 which is generated in degree 1. Either A can be presented by 3 generators and 3 quadratic relations, or else by 2 generators and 2 cubic relations. Throughout this paper, A will denote an algebra so presented, over a ground field k.


Exact Sequence Irreducible Component Elliptic Curf Homogeneous Element Hilbert Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [An]
    D. Anick, On the homology of associative algebras, Trans. Amer. Math. Soc. 296 (1986), 641–659.MathSciNetCrossRefMATHGoogle Scholar
  2. [A-K]
    A. Altman and S. Kleiman, Introduction to Grothendteck Duality Theory, Lecture Notes in Math. 146 (1970).Google Scholar
  3. [A-T]
    E. Artin and J. Tate, A note on finite ring extensions, J. Math. Soc. Japan 3 (1951), 74–77.MathSciNetCrossRefGoogle Scholar
  4. [A-S]
    M. Artin and W. Schelter, Graded algebras of global dimension 3, Advances in Math 66 (1987), 171–216.MathSciNetGoogle Scholar
  5. [A-T-V]
    M. Artin, M., J. Tate, and M. Van Den Bergh, Modules over regular algebras of dimension 3, (in preparation).Google Scholar
  6. [Au]
    M. Auslander, On the dimension of modules and algebras III, Nagoya Math. J. 9 (1955), 67–77.MathSciNetCrossRefMATHGoogle Scholar
  7. [B1]
    N. Bourbaki, Algèbre, Eléments de Mathématiques, Hermann, Paris 1960–65.MATHGoogle Scholar
  8. [B2]
    N. Bourbaki, Algèbre Commutative, Eléments de Mathématiques, Hermann, Paris 1960–65.MATHGoogle Scholar
  9. [C]
    H. Cartan, Homologie et cohomologie d’une algèbre gradueé, Séminaire Cartan, 11e année, 57–58, exposé 15.Google Scholar
  10. [C-E]
    H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton 1956.MATHGoogle Scholar
  11. [EGA]
    A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique, Pub. Math Inst. Hautes Études Sci. 1960–67.MATHGoogle Scholar
  12. [H]
    R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York 1977.CrossRefMATHGoogle Scholar
  13. [O-F]
    Одесский, А. Б. and Б. Л. Фейгнн, Алгебры Склянин, ассоциированные с эллиптической кривой, (manuscript).Google Scholar
  14. [N-O]
    С. Nastacescu and R. Van Oystaeyen, Graded Ring Theory, North-Holland, Amsterdam 1982.Google Scholar
  15. [R]
    C. P. Ramanujam, Remarks on the Kodaira vanishing theorem, J. Indian Math. Soc. 36 (1972), 41–51.MathSciNetMATHGoogle Scholar
  16. [S]
    Склянин, Е. К., О некоторых алгебраических структурах, связанных с уравнением янга-Бакстера., II Представления квантовой алгебры, — Функцион анализ 17 (1983), 34–38.Google Scholar
  17. [W]
    Wall, C. T. C, Generators and relation for the Steenrod algebras, Annals of Math 72 (1960), 429–444.CrossRefMATHGoogle Scholar
  18. [V]
    Van Den Bergh, M., Regular algebras of dimenston 3, Séminaire Dubreil-Malliavin 1986, Lecture Notes in Math. 1296, Springer-Verlag, Berlin 1987, 228–234.Google Scholar

Copyright information

© Springer Science+Business Media New York 2007

Authors and Affiliations

  • Michael Artin
    • 1
  • John Tate
    • 2
  • M. Van den Bergh
    • 3
  1. 1.Dept. of MathematicsMITCambridgeUSA
  2. 2.Dept. of MathematicsHarvard UniversityCambridgeUSA
  3. 3.Dept. Wisk. en Inform.UIAWilrijkBelgium

Personalised recommendations