Non-commutative Ruelle-Sullivan type currents

  • Jean-Luc Brylinski
Part of the Progress in Mathematics book series (MBC)


We present here a simple direct construction which, under certain circumstances, produces a map \({H_*}(g,\;C) \to H_*^{cl}(M,\;C)\) if g is a Lie algebra which acts infinitesimally on the manifold M.


Modulus Space Spectral Sequence Cohomology Class Symplectic Manifold Poisson Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arbarello, E., De Concini, C., Kac, V., and Procesi, C., Moduli spaces of curves and representation theory, Comm. Math. Phys. 17 (1988), 1–36.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Borel, A. and Moore, J-C., Homology theory for locally compact spaces, Michigan Math. J. 7 (1960), 137–159.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Brylinski, J-L., A differential complex for Poisson manifolds, J. Diff. Geom. 28 (1960), 93–114.MathSciNetMATHGoogle Scholar
  4. [4]
    Cartan, H., and Eilenberg, S., Homological algebra, Princeton University Press (1956).MATHGoogle Scholar
  5. [5]
    Chevalley, C. and Eilenberg, S., Cohomology theory of Lie groups and Lie algebras, Trans. A.M.S. 63 (1948), 85–124.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    Dubrovin, B., Novikov, S.P. and Fomenko, A.T., Modern geometrymethods and applications. Graduate text in math. 93 (1984).Google Scholar
  7. [7]
    Kassel, C., Homologie cyclique des algèbres enveloppantes, Invent. Math. 91 (1988), 221–251.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Kostant, B., Quantization and Unitary Representations. Part I: Pre-quantization, Lecture Notes in Math., 170, Springer-Verlag (1970), 87–208.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Lichnérowicz, A., Algèbre de Lie des automorphismes infinitésimaux d f une structure unimodulaire, Ann. Inst. Fourier 24 (1974), 219–226.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Lichnérowicz, A., Les variétés de Poisson et leurs algèbres de Lie associées, J. of Diff. Geom. 12 (1977), 253–300.MATHGoogle Scholar
  11. [11]
    Nomizu, K., On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. 59 (1954), 531–538.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Pressley, A. and Segal, G., Loop groups, Clarendon Press (1986).MATHGoogle Scholar
  13. [13]
    Ruelle, P. and Sullivan, D. Currents, flows and diffeomorphisms, Topology 14 (1975), 319–327.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    Souriau, J.-M., Structure des systèmes dynamiques, Dunod, Paris, 1970.MATHGoogle Scholar
  15. [15]
    Weinstein, A., The local structure of Poisson manifolds, J. Diff. Geom. 18 (1983), 523–557.MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2007

Authors and Affiliations

  • Jean-Luc Brylinski
    • 1
  1. 1.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations