Advanced Materials for the Future: Protein-based Materials with Potential to Sustain Individual Health and Societal Development


The industrial revolution of the Nineteenth Century was born of the water-to-steam phase transition. As implicit in the last three chapters and explicit in the Epilogue, biology was born of the inverse temperature transition. As argued in this chapter, the advanced biomaterials renaissance of the Twenty-first Century will also have been born of the inverse temperature transition.


Pressure Ulcer Hydrophobic Association Acoustic Absorption Urinary Indwell Catheter Monomer Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Pasteur, “Pourquoi la France n’a pas trouve ďhomme superieurs au moment du peril.” Rev. Sci., (Paris), 1871.Google Scholar
  2. 2.
    J. Bronowski, The Ascent of Man. Little, Brown and Company, Boston, 1973, p. 110.Google Scholar
  3. 3.
    D.W. Urry, R.D. Harris, and K.U. Prasad, “Chemical Potential Driven Contraction and Relaxation by Ionic Strength Modulation of an Inverse Temperature Transition.” J. Am. Chem. Soc., 110, 3303–3305, 1988.CrossRefGoogle Scholar
  4. 4.
    Praemer, S. Furner, and D.P. Rice, Musculoskeletal Conditions in the United States. Park Ridge, American Academy of Orthopaedic Surgeons, 1992.Google Scholar
  5. 5.
    G. Waddell, “Low Back Pain: A Twentieth Century Health Care Enigma.” Spine, 21, 2820–2825, 1996.PubMedCrossRefGoogle Scholar
  6. 6.
    T.W. Hu, “Impact of Urinary Incontinence on Health-care Costs.” J. Am. Geriatr. Soc., 38, 292–295, 1990.PubMedGoogle Scholar
  7. 7.
    Report/Abstract—National Pressure Ulcer Advisory Panel, Annual Conference Program 2001. NPUAP 11250 Roger Bacon Dr., Suite 8, Reston, VA 20190-5202.Google Scholar
  8. 8.
    National Pressure Ulcer Advisory Panel, Statement on Pressure Ulcer Formation and Pressure Ulcers. Incidence. Economics. Risk Assessment, SUNY at Buffalo, Beck Hill, 1992.Google Scholar
  9. 9.
    R.M. Allman, “Epidemiology of Pressure Sores in Different Populations.” Decubitus, 2, 30–32, 1989.PubMedGoogle Scholar
  10. 10.
    J.S. Young, P.E. Burns, A.M. Bowen, and R. McCutchen, Spinal Cord Injury Statistics: Experience of the Regional Spinal Cord Injury Systems. National Spinal Cord Injury Data Research Center, Phoenix, 1982, p. 95.Google Scholar
  11. 11.
    N.S. Miller and M.S. Gold, “An Introduction to the Pharmacological Therapies of Drug and Alcohol Addictions.” In Pharmacological Therapies for Drug and Alcohol Addictions, N.S. Miller and M.S. Gold, Eds., Marcel Dekker, New York, 1995, pp. 1–29.Google Scholar
  12. 12.
    J.L. Olsen and F.A. Kinel, “A Review of Parenteral Sustained-Release Naltrexone Systems.” In Naltrexone Research Monograph 28, R.E. Willette and G. Barnett, Eds., National Institute of Drug Abuse, 1980.Google Scholar
  13. 13.
    J.R. Hughes, “Non-nicotine Pharmacotherapies for Smoking Cessation.” J. Drug Dev., 6, 197–203, 1994.Google Scholar
  14. 14.
    E.N. Shuyman, S. Porat, E. Witztum, D. Gandacu, R. Barhamburger, and Y. Ginath, Biol. Psychiatry, 35, 934–935, 1994.Google Scholar
  15. 15.
    G. Gerra, A. Mercato, R. Caccavari, B. Fontanesi, R. Delsignore, G. Fertonani, P. Avanzini, P. Rustichelli, and M. Passeri, “Clonidine and Opiate Receptor Antagonists in the Treatment of Heroin Addiction.” J. Substance Abuse Treatment, 12, 35–41, 1995.CrossRefGoogle Scholar
  16. 16.
    V. Navaratnam, A. Jamaludin, N. Raman, M. Mohamed, and S.M. Mansor, “Determination of naltrexone dosage for narcotic agonist in detoxified Asian addicts.” Drug Alcohol Dependence, 34, 231–236, 1994.CrossRefGoogle Scholar
  17. 17.
    A.D. Frazer, “Clinical Toxicology of Drugs Used in the Treatment of Opiate Dependency.” Clin. Lab. Med., 10, 375–385, 1990.Google Scholar
  18. 18.
    J.J. Legarda and M. Gossop, “A 24-h Inpatient Detoxification Treatment for Heroin Addicts: A Preliminary Investigation.” Drug Alsohol Dependence, 35, 91–93, 1994.CrossRefGoogle Scholar
  19. 19.
    R.M. Swift, W. Whelihan, O. Kuznetzov, G. Buongiorno, and H. Hsuing, “Naltrexone-induced Alterations in Human Ethanol Intoxication.” Am. J. Psychiatry, 151, 1463–1467, 1994.PubMedGoogle Scholar
  20. 20.
    M.J. Bohn, H.R. Kranzler, D. Beazoglou, and D. Staehler, “Naltrexone and Brief Counseling to Reduce Heavy Drinking: Results of a Small Clinical Trial.” Am. J. Addictions, 32, 91–99, 1994.CrossRefGoogle Scholar
  21. 21.
    C.P. O’Brien, “Treatment of Alcoholism as a Chronic Disorder.” Alcohol, 11, 433–437, 1994.CrossRefGoogle Scholar
  22. 22.
    I. Chatoor, B.H. Herman, and J. Hartzler, “Effects of the Opiate Antagonist, Naltrexone, on Binging Antecedents and Plasma β-Endorphin Concentrations.” J. Am. Acad. Child Adolescent Psychiatry, 33, 748–752, 1994.CrossRefGoogle Scholar
  23. 23.
    T. Thompson, T. Hackenberg, D. Cerruti, D. Baker, and S. Axtell, “Opioid Antagonist Effects on Self-injury in Adults with Mental Retardation: Response Form and Location as Determinants of Medication Effects.” Am. J. Mental Retardation, 99, 85–102, 1994.Google Scholar
  24. 24.
    N.M. Gonzales, M. Campbell, A.M. Small, J. Shay, L.D. Bluhm, P.B. Adams, and R.L. Foltz, “Naltrexone Plasma Levels, Clinical Response and Effect on Weight in Autistic Children.” Psychopharmacol. Bull., 30, 203–208, 1994.Google Scholar
  25. 25.
    R. Kurlan, L. Majumdar, C. Deeley, G.S. Mudholkar, S. Plumb, and P.G. Como, “A Controlled Trial of Propoxyphene and Naltrexone in Patients with Tourette’s Syndrome.” Ann. Neurol., 30, 19–23, 1991.PubMedCrossRefGoogle Scholar
  26. 26.
    A.K. Percy, D.G. Glaze, R.J. Schultz, H.Y. Zoghbi, D. Williamson, J.D. Frost, J.J. Jankovic, D. Deljunco, M.S. Kender, S. Waring, and E.C. Myer, “Rett’s Syndrome: Controlled Study of an Oral Opiate Antagonist, Naltrexone.” Ann. Neurol., 35, 464–470, 1994.PubMedCrossRefGoogle Scholar
  27. 27.
    M.S. Gold, “Pharmacological Therapies of Opiate Addiction.” In Pharmacological Therapies for Drug and Alcohol Addictions, N.S. Miller and M.S. Gold, Eds., Marcel Dekker, New York, 1995, pp. 159–174.Google Scholar
  28. 28.
    D.S. Sax, C. Kornetsky, and A. Kim, “Lack of hepatotoxicity with naltrexone treatment.” J. Clin. Pharmacol., 34, 898–901, 1994.PubMedGoogle Scholar
  29. 29.
    K. Verebey, “Quantitative Determination of Naltrexone, 6β-Naltrexol and 2-Hydroxy-3-Methoxy-6β-Naltrexol (HMN) in Human Plasma, Red Blood Cells, Saliva and Urine by Gas Liquid Chromatography.” In Naltrexone: Research Monograph 28, R.E. Willette and G. Barnett, Eds., National Institute on Drug Abuse, 1981, pp. 36–51.Google Scholar
  30. 30.
    R.A. Littrel and Hyde, “Pharmacological Therapies in Surgical Patients with Drug and Alcohol Addictions.” In Pharmacological Therapies for Drug and Alcohol Addictions, N.S. Miller and M.S. Gold, Eds., Marcel Dekker, New York, 1995, pp. 287–305.Google Scholar
  31. 31.
    D.T. McPherson, J. Xu, and D.W. Urry, “Product Purification by Reversible Phase Transition Following E. coli Expression of Genes Encoding up to 251 Repeats of the Elastomeric Pentapeptide GVGVP” Protein Expression Purification, 7, 51–57, 1996.PubMedCrossRefGoogle Scholar
  32. 33.
    D.W. Urry, A. Nicol, D.T. McPherson, C.M. Harris, T.M. Parker, J. Xu, D.C. Gowda, and P.R. Shewry, “Properties, Preparations and Applications of Bioelastic Materials.” In Encyclopedic Handbook of Biomaterials and Bioengineering—Part A—Materials, Vol. 2, D.L. Wise, D.J. Trantolo, D.E. Altobelli, M.J. Yazemski, J.D. Gresser, and E.R. Schwartz, Eds. Marcel Dekker, New York, 1995, pp. 1619–1673.Google Scholar
  33. 34.
    D.W. Urry, D.T. McPherson, J. Xu, D.C. Gowda, N. Jing, T.M. Parker, H. Daniell, and C. Guda, “Protein-Based Polymeric Materials: Syntheses and Properties” In Polymeric Materials Encyclopedia: Synthesis, Properties and Applications, CRC Press, Boca Raton, pp. 7263–7279, 1996.Google Scholar
  34. 35.
    H. Daniell, C. Guda, D.T. McPherson, X. Zhang, and D.W. Urry, “Hyper Expression of a Synthetic Protein Based Polymer Gene.” Methods Mol. Biol., 63, 359–371, 1996.Google Scholar
  35. 36.
    X. Zhang, C. Guda, R. Datta, R. Dute, D.W. Urry, and H. Daniell, “Nuclear Expression of an Environmentally Friendly Synthetic Protein-based Polymer Gene in Tobacco Cells.” Letters, 17, 1279–1284, 1995.Google Scholar
  36. 37.
    X. Zhang, D.W. Urry, and H. Daniell, “Expression of an Environmentally Friendly Synthetic Protein-based Polymer Gene in Transgenic Tobacco Plants.” Plant Cell Rep., 16, 174–179, 1996.Google Scholar
  37. 38.
    R.W. Herzog, N.K. Singh, D.W. Urry, and H. Daniell, “Expression of a Synthetic Protein-based Polymer (Elastomer) Gene in Aspergillus nidulans.” Appl. Microbiol. Biotechnol., 47, 368–372, 1997.PubMedCrossRefGoogle Scholar
  38. 41.
    D.W. Urry, C.-H. Luan, C.M. Harris, and T. Parker, “Protein-based Materials with a Profound Range of Properties and Applications: The Elastin ΔT t Hydrophobic Paradigm.” In Proteins and Modified Proteins as Polymeric Materials, K. McGrath and D. Kaplan, Eds., Birkhäser Press, Boston, 1997, pp. 133–177.Google Scholar
  39. 42.
    D.W. Urry and K.U. Prasad, “Syntheses, Characterizations and Medical Uses of the Polypentapeptide of Elastin and its Analogs.” In Biocompatibility of Tissue Analogues, D.F. Williams, Ed., CRC Press, Boca Raton, FL, 1985, pp. 89–116.Google Scholar
  40. 43.
    K.U. Prasad, M.A. Iqbal, and D.W. Urry, “Utilization of 1-Hydroxybenzotriazole in Mixed Anhydride Coupling Reactions,” Int. J. Peptide Protein Res., 25, 408–413, 1985.CrossRefGoogle Scholar
  41. 44.
    D.C. Gowda, C.-H. Luan, R.L. Furner, S.Q. Peng, N. Jing, C.M. Harris, T.M. Parker, and D.W. Urry, “Synthesis and Characterization of Human Elastin W4 Sequence.” Int. J. Peptide Protein Res., 46, 453–463, 1995.CrossRefGoogle Scholar
  42. 45.
    D.C. Gowda, T.M. Parker, R.D. Harris, and D.W. Urry, “Synthesis, Characterizations and Medical Applications of Bioelastic Materials.” In Peptides: Design, Synthesis, and Biological Activity, C. Basava and G.M. Anantharamaiah, Eds., Birkhäuser Press, Boston, 1994, pp. 81–111.Google Scholar
  43. 46.
    R.B. Merrifield, “Solid Phase Peptide Synthesis I. The Synthesis of a Tetrapeptide.” J. Am. Chem. Soc. 85, 2149–2154, 1963.CrossRefGoogle Scholar
  44. 47.
    K.U. Prasad, M. Iqbal, and D.W. Urry, “Synthesis of Two Component Models of Elastin.” Peptides Chem. Biol., 399–403, 1988.Google Scholar
  45. 48.
    D.W. Urry, T.M. Parker, M.C. Reid, and D.C. Gowda, “Biocompatibility of the Bioelastic Materials, Poly(GVGVP) and Its γ-irradiation Cross-linked Matrix: Summary of Generic Biological Test Results.” J. Bioactive Compatible Polym., 6, 263–282, 1991.CrossRefGoogle Scholar
  46. 49.
    D.W. Urry, D.T. McPherson, J. Xu, D.C. Gowda, and T.M. Parker, “Elastic and Plastic Protein-based Polymers: Potential for Industrial Uses.” In Industrial Biotechnological Polymers, C. Gebelein and C.E. Carraher, Jr., Eds, Technomic Publishing Co., Lancaster, PA, 1995, pp. 259–281.Google Scholar
  47. 50.
    D.W. Urry, A. Pattanaik, M.A. Accavitti, C.-X. Luan, D.T. McPherson, J. Xu, D.C. Gowda, T.M. Parker, C.M. Harris, and N. Jing, “Transductional Elastic and Plastic Protein-based Polymers as Potential Medical Devices.” In Handbook of Biodegradable Polymers, A.J. Domb, J. Kost, and D.M. Wiseman, Eds., Harwood Academic Publishers, Chur, Switzerland, 1997, pp. 367–386.Google Scholar
  48. 51.
    G.L. Picciolo, D.S. Kaplan, K.F. Batchelder, R. Kapur, and R.M. Kotz, “Biotechnology-derived Biomaterials Modulate Host Cell Reactive Oxygen Production as Measured by Chemiluminescence.” 19th Annual Meeting, Society for Biomaterials, Birmingham, AL, 1993.Google Scholar
  49. 53.
    A. Pattanaik, T.M. Parker, and D.W. Urry, unpublished results.Google Scholar
  50. 54.
    D.W. Urry, S.Q. Peng, L.C. Hayes, D.T. McPherson, Jie Xu, T.C. Woods, D.C. Gowda, and A. Pattanaik, “Engineering Protein-based Machines to Emulate Key Steps of Metabolism (Biological Energy Conversion).” Biotechnol. Bioeng., 58, 175–190, 1998.PubMedCrossRefGoogle Scholar
  51. 55.
    G. Wider, S. Macura, A. Kumar, R.R. Ernst, and K. Wüthrich, “Homonuclear two-dimensional 1H NMR of Proteins, Experimental Procedures.” J. Magn. Reson. 56, 207–234, 1984.Google Scholar
  52. 56.
    D.W. Urry, D.K. Chang, R. Krishna, D.H. Huang, T.L. Trapane, and K.U. Prasad, “Two Dimensional Proton Nuclear Magnetic Resonance Studies on Poly(VPGVG) and its Cyclic Conformational Correlate, Cyclo(VPGVG)3.” Biopolymers, 28, 819–833, 1989.PubMedCrossRefGoogle Scholar
  53. 58.
    D.W. Urry, A. Pattanaik, J. Xu, T.C. Woods, D.T. McPherson, and T.M. Parker, “Elastic Protein-based Polymers in Soft Tissue Augmentation and Generation.” J. Biomater. Sci. Polymer Edn., 9, 1015–1048, 1998.Google Scholar
  54. 59.
    D.W. Urry, C.M. Venkatachalam, M.M. Long, and K.U. Prasad, “Dynamic β-Spirals and a Librational Entropy Mechanism of Elasticity.” In Conformation in Biology, R. Srinivasan and R.H. Sarma, Eds., G.N. Ramachandran Festschrift Volume, Adenine Press, 1982, pp. 11–27.Google Scholar
  55. 60.
    D.K. Chang and D.W. Urry, “Polypentapeptide of Elastin: Damping of Internal Chain Dynamics on Extension.” J. Comput. Chem., 10, 850–855, 1989.CrossRefGoogle Scholar
  56. 61.
    D.W. Urry and T.M. Parker, “Mechanics of Elastin: Molecular Mechanism of Biological Elasticity and its Relevance to Contraction.” J. Muscle Res. Cell Motility, 23, 2002.Google Scholar
  57. 62.
    D.W. Urry, T. Hugel, M. Seitz, H. Gaub, L. Sheiba, J. Dea, J. Xu, and T. Parker, “Elastin: A Representative Ideal Protein Elastomer.” Phil. Trans. R. Soc. Lond. B, 357, 169–184, 2002.CrossRefGoogle Scholar
  58. 63.
    D.W. Urry, T. Hugel, M. Seitz, H. Gaub, L. Sheiba, J. Dea, J. Xu, L. Hayes, F. Prochazka, and T. Parker, “Ideal Protein Elasticity: The Elastin Model.” In “Elastomeric Proteins: Structures, Biomechanical Properties and Biological Roles.” P.R. Shewry, A.S. Tatham, and A.J. Bailey, Eds. Cambridge University Press, The Royal Society; Chapter Four, pages 54–93, 2003.Google Scholar
  59. 64.
    D.W. Urry, J. Xu, W. Wang, L. Hayes, F. Prochazka, and T.M. Parker, “Development of Elastic Protein-based Polymers as Materials for Acoustic Absorption.” Mater. Res. Soc. Symp. Proc. 774, 81–92, 2003.Google Scholar
  60. 65.
    Prochazka F., PhD Thesis, Etude deľevolution des relaxations dans les gels en cours de formation, application aux polyurethanes. 1998, Université du Maine, Le Mans, France.Google Scholar
  61. 66.
    T. Nicolai, F. Prochazka, and D. Durand, “Comparison of Polymer Dynamics Between Entanglements and Covalent Cross-links.” Phys. Rev. Lett., 82, 863–866, 1999.CrossRefGoogle Scholar
  62. 67.
    R. Buchet, C.-H. Luan, K.U. Prasad, R.D. Harris, and D.W. Urry, “Dielectric Relaxation Studies on Analogs of the Polypentapeptide of Elastin.” J. Phys. Chem., 92, 511–517, 1988.CrossRefGoogle Scholar
  63. 68.
    E.O. Wilson, “Consilience: The Unity of Knowledge.” Alfred E. Knopf, New York, 1998, p. 298.Google Scholar
  64. 69.
    D.W. Urry, K.U. Prasad, M.M. Long, and R.D. Harris “Elastomeric Polypeptides as Potential Vascular Prosthetic Materials.” Polym. Mater. Sci. Eng., 59, 684–689, 1988.Google Scholar
  65. 70.
    D.A. McDonald, The Elastic Properties of the Arterial Wall, Chapter 10. The Camelot Press Ltd., Southampton, Great Britain, 1974.Google Scholar
  66. 71.
    D.Y.M. Leung, S. Glagov, and M.B. Mathews, “Cyclic Stretching Stimulates Synthesis of Matrix Components by Arterial Smooth Muscle Cells In Vitro,” Science, 191, 475–477, 1976.PubMedCrossRefGoogle Scholar
  67. 72.
    B. van der Lei, C.R. Wildevuur, P. Nieuwenhuis, E.H. Blaauw, F. Dijk, C.E. Hulsteart, and I. Molenaar, “Regeneration of the Arterial Wall in Microporous, Compliant, Biodegradable Vascular Grafts After Implantation Into the Rat Abdominal Aorta,” Cell Tissue Res., 242, 569–578, 1985.PubMedCrossRefGoogle Scholar
  68. 73.
    N. Wang, J.P. Butler, and D.E. Ingber, “Mechanotransduction Across the Cell Surface and Through the Cytoskeleton,” Science, 260, 1124–1127, 1993.PubMedCrossRefGoogle Scholar
  69. 74.
    P.R. Girard and R.M. Nerem, “Shear Stress Modulates Endothelial Cell Morphology and F-actin Organization Through the Regulation of Focal Adhesion-associated Proteins,” J. Cell. Physiol., 163, 179–193, 1995.PubMedCrossRefGoogle Scholar
  70. 75.
    A. Nicol, D.C. Gowda, and D.W. Urry, “Cell Adhesion and Growth on Synthetic Elastomeric Matrices Containing Arg-Gly-Asp-Ser-3.” J. Biomed. Mater. Res., 26, 393–413. 1992.PubMedCrossRefGoogle Scholar
  71. 76.
    D.W. Urry, D.C. Gowda, B.A. Cox, L.D. Hoban, A. McKee, and T. Williams, “Properties and Prevention of Adhesions Applications of Bioelastic Materials.” Mater. Res. Soc. Symp. Proc., 292, 253–264, 1993.Google Scholar
  72. 77.
    L.D. Hoban, M. Pierce, J. Quance, I. Hayward, A. McKee, D.C. Gowda, D.W. Urry, and T. Williams, “The Use of Polypenta-peptides of Elastin in the Prevention of Postoperative Adhesions,” J. Surg. Res., 56, 179–183, 1994.PubMedCrossRefGoogle Scholar
  73. 78.
    F.J. Elsas, D.C. Gowda, and D.W. Urry, “Synthetic Polypeptide Sleeve for Strabismus Surgery,” J. Pediatr. Ophthalmol. Strabismus, 29, 284–286, 1992.PubMedGoogle Scholar
  74. 79.
    R.N. Alkalay, D.H. Kim, D.W. Urry, J. Xu, T.M. Parker, and P.A. Glazer, “Prevention of Post-laminectomy Epidural Fibrosis Using Bioelastic Materials,” Spine, 28, 1659–1665, 2003.PubMedCrossRefGoogle Scholar
  75. 80.
    P.W. Schiller, “Development of Receptor-Specific Opioid Peptide Analogues,” In Progress in Medicinal Chemistry, G.P. Ellis and G.B. West, Eds., Elsevier Press, Amsterdam, 1991, pp. 301–340.Google Scholar
  76. 81.
    V. H öOpioid Peptide Processing and Receptor Selectivity,” Annu. Rev. Pharmacol. Toxicol., 26, 59–77, 1986.Google Scholar
  77. 82.
    J. Hughes, T.W. Smith, H.W. Kosterlitz, L.Z. Fothergill, B.A. Morgan, and R.H. Morris, “Identification of Two Related Pentapeptides from the Brain with Potent Opiate Agonist Activity,” Nature, 258, 577–579, 1975.PubMedCrossRefGoogle Scholar
  78. 83.
    S.J. Weber, D.L. Greene, V.J. Hruby, H.I. Hamamura, F. Porreca, and T.P. Davis, “Whole Body and Brain Distribution of [3H]cylic [D-Pen2,D-Pen5] Enkephalin after Intraperitoneal, Intravenous, Oral and Subcutaneous Administration,” J. Pharmacol. Exp. Ther., 263, 1308–1316, 1992.PubMedGoogle Scholar
  79. 84.
    R.L. Follenfant, G.W. Hardy, L.A. Lowe, C. Schneider, and T.W. Smith, “Antinociceptive Effects of the Novel Opioid Peptide BW443C Compared with Classical Opiates; Peripheral Versus Central Actions,” Br. J. Pharmacol., 93, 85–92, 1988.PubMedGoogle Scholar
  80. 82.
    G.W. Hardy, L.A. Lowe, G. Mills, P.Y Sang, D.S.A. Simpkin, R.L. Follenfant, C. Shankley, and T.W. Smith, “Peripherally Acting Enkephalin Analogues. 2. Polar Tri-and Tetrapeptides,” J. Med. Chem., 32, 1108–1118, 1989.PubMedCrossRefGoogle Scholar
  81. 86.
    W.R. Martin, C.G. Eades, J.A. Thompson, R.A. Huppler, and P.E. Gilbert, “The Effects of Morphine-and Nalorphine-like Drugs in the Nondependent and Morphine-dependent Chronic Spinal Dog,” J. Pharmacol. Exp. Ther., 197, 517–533, 1976.PubMedGoogle Scholar
  82. 87.
    J.A.H. Lord, A.A. Waterfield, J. Hughes and H.W. Kosterlitz, “Endogenous Opioid Peptides: Multiple Agonists and Receptors,” Nature, 267, 495–499, 1977.PubMedCrossRefGoogle Scholar
  83. 88.
    J.I. Szekely, “Opioid Peptides in Substances Abuse”, CRC Press, Boca Raton, FL, 1994.Google Scholar
  84. 89.
    T.L. Yaksh, J. Jang, Y. Nishiuchi, K.P. Braun, S. Ro, and M. Goodman, “The Utility of 2-Hydroxypropyl-b-Cyclodextrin as a Vehicle for the Intracerebral and Intrathecal Administration of Drugs,” Life Sci., 48, 623–633, 1991.PubMedCrossRefGoogle Scholar
  85. 90.
    N. Bodor, L. Prokai, W.-M. Wu, H. Faraq, S. Jonalagadda, M. Kawamura, and J. Simpkins, “A Strategy for Delivery Peptides into the Central Nervous System by Sequential Metabolism,” Science, 257, 1698–1700, 1992.PubMedCrossRefGoogle Scholar
  86. 91.
    R.M. Ottenbrite, Ed., “Polymeric, Drugs and Drug Administration,” Am. Chem. Soc. Symp. Ser., 545, 1994.Google Scholar
  87. 92.
    P.T. Tarcha, Ed., “Polymers for Controlled Drug Delivery,” CRC Press, Boca Raton, FL, 1991.Google Scholar
  88. 93.
    N.A. Peppas, Editor, “Hydrogels in Medicine and Pharmacy,” Volumes I, II, and III, CRC Press, Inc. 1987.Google Scholar
  89. 94.
    J. Kost and R. Langer, “Equilibrium Swollen Hydrogels in Controlled Release,” In Hydrogels in Medicine and Pharmacy, N.A. Peppas, Ed., CRC Press, Boca Raton, FL, 1987, pp. 95–108.Google Scholar
  90. 95.
    C.G. Pitt, T.A. Marks, and A. Schindler, “Biodegradable Drug Delivery Systems Based on Aliphatic Polyesters: Application to Contraceptives and Narcotic Antagonists,” Naltrexone Res. Monogr., 28, 1980.Google Scholar
  91. 96.
    N.A. Peppas and R.W. Korsmeyer, “Dynamically Swelling Hydrogels in Controlled Release Applications.” In Hydrogels in Medicine and Pharmacy, N.A. Peppas, Ed., CRC Press, Boca Raton, FL, 1987, pp. 109–136.Google Scholar
  92. 97.
    D.W. Urry, T.C. Woods, L.C. Hayes, J. Xu, D.T. McPherson, M. Iwama, M. Furuta, T. Hayashi, M. Murata, and T.M. Parker, “Elastic Protein-Based Biomaterials: Elements of Basic Science, Controlled Release and Biocompatibility,” In Biomaterials Handbook—Advanced Applications of Basic Sciences and Bioengineering, 2004, in press.Google Scholar
  93. 98.
    B.W. Kemppainen, D.W. Urry, C.-X. Luan, J. Xu, S.F. Swaim, and S. Goel, “In vitro skin penetration of dazmegrel delivered with a bioelastic matrix,” Int. J. Pharmaceutics, 271, 301–303, 2004.CrossRefGoogle Scholar
  94. 99.
    N.-Z. Wang, D.W. Urry, S.F. Swaim, R.L. Gillette, C.E. Hoffman, S.H. Hinkle, S.L. Coolman, C.-X. Luan, J. Xu, and B.W. Kemppainen, “Skin concentrations of thromboxane synthetase inhibitor after topical application with bioelastic membrane,” J. vet. Pharmacol. Therap., 27, 37–43, 2004.Google Scholar
  95. 100.
    B. Kemppainen, N.-Z. Wang, S. Swaim, D.W. Urry, C.-X. Luan, J. Xu, E. Sartin, R. Gillette, S. Hinkle, and S. Coolman, “Bioelastic membranes for topical application of thromboxane synthetase inhibitor for protection of skin from pressure injury: a preliminary study.” Wound Repair and Regeneration, 12, 453–460, 2004.PubMedCrossRefGoogle Scholar
  96. 101.
    S.F. Swaim, D.M. Vaughn, P.J. Spalding, K.P. Riddell, and J.A. McGuire, “Evaluation of the dermal effects of casts padding in coaptation casts on dogs,” Am. J. Vet. Res., 53, 1266–1272, 1992.PubMedGoogle Scholar
  97. 102.
    S.F. Swaim, D.M. Bradley, D.M. Vaughn, R.D. Powers, C.E. Hoffman, and M.L. Beard, “Evaluation of Thromboxane Synthetase Inhibitor in the Prevention of Dermal Pressure Lesion,” Wounds, 6, 74082, 1994.Google Scholar
  98. 103.
    F. Oesterhelt, M. Rief, and H.E. Gaub, “Single Molecule Force Spectroscopy by AFM Indicates Helical Structure of Poly(ethylene-glycol) in Water,” New J. Phys., 1, 6.1–6.11, 1999.CrossRefGoogle Scholar
  99. 104.
    H. Clausen-Schaumann, M. Rief, C. Tolksdorf, and H.E. Gaub, “Mechanical Stability of Single DNA Molecules,” Biophys. J., 78, 1997–2007, 2000.PubMedCrossRefGoogle Scholar
  100. 105.
    H.E. Gaub and J.M. Fernandez, “The Molecular Elasticity of Individual Proteins Studies by AFM-related Techniques,” AvH Magazin, 71, 11–18, 1998.Google Scholar
  101. 106.
    D. Bisig, P. Weber, L. Vaughan, K.H. Winterhalter, and K. Piontek, “Purification, Crystallization and Preliminary Crystallographic Studies of a two Fibronectin Domain Segement from Chicken Tenascin Encompassing the Heparin-and Contactin-binding Regions,” Acta Crystallogr. D55, 1069–1073, 1999.Google Scholar
  102. 108.
    A. Levitzki, “Signal Transduction Therapy.” Eur. J. Biochem., 225, 1–13, 1994.CrossRefGoogle Scholar
  103. 109.
    G.C. Blobe, L.M. Obeid, and Y.A. Hannun, “Regulation of Protein Kinase C and Role in Cancer Biology.” Cancer Metastasis Rev., 13, 411–431, 1994.PubMedCrossRefGoogle Scholar
  104. 110.
    F.A. Al-Obeidi, J.J. Wu, and K.S. Lam, “Protein Tyrosine Kinases: Structure, Substrate, Specificity and Drug Discovery.” Biopolymers (Peptide Sci.), 47, 197–223, 1998.CrossRefGoogle Scholar
  105. 111.
    D.K. Luttrell, A. Lee, T.J. Lansing, R.W. Crosby, K.D. Jung, D. Willard, M. Luther, M. Rodriguez, J. Berman, and T.M. Gilmer, “Involvement of pp60c-src with Two Major Signaling Pathways in Human Breast Cancer.” Proc. Natl. Acad. Sci. U.S.A., 91, 83–87, 1994.PubMedCrossRefGoogle Scholar
  106. 112.
    A. Greco, M.A. Pierotti, I. Bongerzone, S. Pagliardini, C. Lenzi, and G. Porta, “TRK-T1 is a Novel Oncogene Formed by the Fusion of TPR and TRK Genes in Human Papillary Thyroid, Carcinomas,” Oncogene, 7, 237–242, 1992.PubMedGoogle Scholar
  107. 113.
    B.J. Blanchard, R.D. Raghunandan, H.M. Roder, and V.M. Ingram, “Hyperphosphorylation of Human TAU by Brain Kinase PK40erk Beyond Phosphorylation by cAMP-dependent PKA: Relation to Alzheimer’s Disease.” Biochem. Biophys. Res. Commun., 200, 187–194, 1994.PubMedCrossRefGoogle Scholar
  108. 114.
    I. Yasuda, “Selective Assay of Protein Kinase C with a Specific Peptide Substrate,” Kobe J. Med. Sci., 37, 163–177, 1991.PubMedGoogle Scholar
  109. 115.
    B.S. Goueli, K. Hsiao, A. Tereba, and A. Goweli, “A Novel and Simple Method to Assay the Activity of Individual Protein Kinases in a Crude Tissue Extract.” Anal. Biochem., 225, 10–17, 1995.PubMedCrossRefGoogle Scholar
  110. 116.
    I. Yasuda, A. Kishimoto, S. Tanaka, M. Tominga, A. Sakurai, and Y. Nishizuka, “A Synthetic Peptide Substrate for Selective Assay of Protein Kinase C.” Biochem. Biophys. Res. Commun., 166, 1220–1227, 1990.PubMedCrossRefGoogle Scholar
  111. 117.
    D.W. Urry, “Protein Folding and the Movements of Life.” World & I 6, 301–309, 1991.Google Scholar
  112. 118.
    D.W. Urry, “Molecular Machines: How Motion and Other Functions of Living Organisms can Result from Reversible Chemical Changes,” Angew. Chem [German], 105, 859–883, 1993; Angew. Chem. Int. Ed. Engl., 32, 819–841, 1993.CrossRefGoogle Scholar
  113. 119.
    A. Pattanaik, W. Holmes, and D.W. Urry, unpublished results.Google Scholar
  114. 120.
    D.W. Urry and A. Pattanaik, “Elastic Proteinbased Materials in Tissue Reconstruction,” Ann. N.Y. Acad Sci., 831, 32–46, 1997.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Personalised recommendations