Skip to main content

Consilient Mechanisms for Protein-based machines of Biology

  • Chapter
What Sustains Life?

Abstract

Biology thrives near a movable cusp of insolubility, and the forces that, in a positively cooperative manner, power the molecular machines of biology drive spatially localized hydrophobic protein domains back and forth across thermodynamically movable water-solubility-insolubility divides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.O. Wilson, Consilience: The Unity of Knowledge. Alfred E. Knopf, New York, 1998, p. 8.

    Google Scholar 

  2. C. Lange and C. Hunte, “Crystal structure of the yeast cytochrome bc1 complex with its bound substrate cytochrome c.” Proc Nat. Acad. Sci. USA, 99, 2800–2805, 2002.

    Article  PubMed  CAS  Google Scholar 

  3. D.M. Himmel, S. Gourinath, L. Reshetnikova, Y. Shen, A.G. Szent-Gyorgyi, and C. Cohen, “Crystallographic Findings on the Internally Uncoupled and Near-rigor States of Myosin: Further Insights into the Mechanics of the Motor.” Proc. Natl. Acad. Sci. U.S.A., 99, 12645–12650, 2002.

    Article  PubMed  CAS  Google Scholar 

  4. A.J. Fisher, C.A. Smith, J. Thoden, R. Smith, K. Sutoh, H.M. Holden, and I. Rayment, “Structural Studies of Myosin: Nucleotide Complexes: A Revised Model for the Molecular Basis of Muscle Contraction.” Biophys. J., 68, 19s–28s, 1995.

    PubMed  CAS  Google Scholar 

  5. J. Monod, “On Symmetry and Function in Biological Systems.” In Nobel Symposium 11: Symmetry and Function of Biological Systems at the Macromolecular Level, A. Engstrom and B. Strandberg, Eds., Almqvist & Wiksell Forlag AB, Stockholm, 1968, p. 1527. Also reprinted in Selected Papers in molecular Biology by Jacques Monod, A. Lwoff and A. Ullmann, Eds., Academic Press, New York, 1978, p. 708.

    Google Scholar 

  6. M.F. Perutz, “Mechanisms of Cooperativity and Allosteric Regulation in Proteins.” Q. Rev. Biophys., 22, 139–236, 1989.

    PubMed  CAS  Google Scholar 

  7. M.F. Perutz, Mechanisms of Cooperativity and Allosteric Regulation in Proteins. Cambridge University Press, Cambridge, 1990, page••.

    Google Scholar 

  8. D.W. Urry and T.M. Parker, “Mechanics of Elastin: Molecular Mechanism of Biological Elasticity and its Relevance to Contraction.” J. Muscle Res. Cell Motility, 23, 541–547, 2002.

    Google Scholar 

  9. J.T. Edsall, “Apparent Molal Heat Capacities of Amino Acids and Other Organic Compounds.” J. Am. Chem. Soc., 57, 1506–1507, 1935.

    Article  CAS  Google Scholar 

  10. J.A.V. Butler, “The Energy and Entropy of Hydration of Organic Compounds.” Trans. Faraday Soc., 33, 229–238, 1937.

    Article  CAS  Google Scholar 

  11. M.V. Stackelberg and H.R. Müller, “Zur Struktur der Gashydrate.” Naturwissenschaften, 38, 456, 1951.

    Article  Google Scholar 

  12. J.C. Rodríguez-Cabello, J. Reguera, M. Alonso, T.M. Parker, D.T. McPherson, and D.W. Urry, “Endothermic and Exothermic Components of an Inverse Temperature Transition for Hydrophobic Association by TMDSC.” Chem. Phys. Lett. 388, 127–131, 2004.

    Article  CAS  Google Scholar 

  13. J.E. Lennard-Jones, “The Equation of State of Gases and Critical Phenomena.” Physica, 4, 941–956, 1937.

    Article  CAS  Google Scholar 

  14. R.A. Buckingham, “The Classical Equation of State of Gaseous Helium, Neon and Argon.” Proc. R. Soc. A, 168, 264–283, 1938.

    Article  CAS  Google Scholar 

  15. D.J. Boorstin, The Seekers: The Story of Man’s Continuing Quest to Understand His World. Random House, New York, 1998, p. 22.

    Google Scholar 

  16. P.L. Privalov, “Cold Inactivation of Enzymes.” Crit. Rev. Biochem. Mol. Biol., 25, 281–305, 1990.

    PubMed  CAS  Google Scholar 

  17. D.W. Urry, M.M. Long, and H. Sugano, “Cyclic Analog of Elastin Polyhexapeptide Exhibits an Inverse Temperature Transition Leading to Crystallization.” J. Biol. Chem., 253, 6301–6302, 1978.

    PubMed  CAS  Google Scholar 

  18. G. Lenaz, “A Critical Appraisal of the Mitochondrial Coenzyme Q Pool.” FEBS Lett., 509, 151–155, 2001.

    Article  PubMed  CAS  Google Scholar 

  19. C. Hunte, “Insights from the Structure of the Yeast Cytochromes bc1 Complex: Crystallization of Membrane Proteins with Antibody Fragments.” FEBS Lett., 504, 126–132, 2001.

    Article  PubMed  CAS  Google Scholar 

  20. C. Hunte, J. Koepke, C. Lange, T. Rossmanith, and H. Michel, “Structure at 2.3 Å Resolution of Cytochrome bc1 Complex from the Yeast Saccaromyces cerevisiae Co-crystallized with an Antibody Fv Fagment.” Structure, 8, 669–684, 2000.

    Article  PubMed  CAS  Google Scholar 

  21. D.W. Urry, “Five Axioms for the Functional Design of Peptide-Based Polymers as Molecular Machines and Materials: Principle for Macromolecular Assemblies.” Biopolymers (Peptide Science), 47, 167–178, 1998.

    Article  CAS  Google Scholar 

  22. D.W. Urry, L.C. Hayes, D.C. Gowda, S.-Q. Peng, and N. Jing, “Electro-chemical Transduction in Elastic Protein-based Polymers.” Biochem. Biophys. Res. Commun., 210, 1031–1039, 1995.

    Article  PubMed  CAS  Google Scholar 

  23. L. Hayes, “Effect of Hydrophobicity of Elastic Protein-based Polymers on Redox Potential.” Ph.D. Dissertation, The University of Alabama at Birmingham, 1998.

    Google Scholar 

  24. M.A. Khaled, V. Renugopalakrishnan, and D.W. Urry, “Proton Magnetic Resonance and Conformational Energy Calculations of Repeat Peptides of Tropoelastin: The Tetrapeptide.” J. Am. Chem. Soc., 98, 7547–7553, 1976.

    Article  PubMed  CAS  Google Scholar 

  25. V. Renugopalakrishnan, M.A. Khaled, and D.W. Urry, “Proton Magnetic Resonance and Conformational Energy Calculations of Repeat Peptides of Tropoelastin: The Pentapeptide.” J. Chem. Soc., Perkin II, 111–119, 1978.

    Google Scholar 

  26. D.W. Urry, S.-Q. Peng, D.C. Gowda, T.M. Parker, and R.D. Harris, “Comparison of Electrostatic-and Hydrophobic-induced pKa Shifts in Polypentapeptides: The Lysine Residue.” Chem. Phys. Lett., 225, 97–103, 1994.

    Article  CAS  Google Scholar 

  27. D.W. Urry, S.-Q. Peng, and T.M. Parker, “Delineation of Electrostatic-and Hydrophobic-Induced pKa Shifts in Polypentapeptides: The Glutamic Acid Residue.” J. Am. Chem. Soc., 115, 7509–7510, 1993.

    Article  CAS  Google Scholar 

  28. R. Buchet, C.-H. Luan, K.U. Prasad, R.D. Harris, and D.W. Urry, “Dielectric Relaxation Studies on Analogs of the Polypentapeptide of Elastin.” J. Phys. Chem., 92, 511–517, 1988.

    Article  CAS  Google Scholar 

  29. W.P. Jencks, “Free Energies of Hydrolysis and Decarboxylation.” In Handbook of Biochemistry and Molecular Biology, Third Edition, G.D. Fasman, Ed., Physical and Chemical Data, Vol. I, CRC Press, Boca Raton, FL, 1976, pp. 296–304.

    Google Scholar 

  30. H.M. Kalckar, “The Nature of Energetic Coupling in Biological Synthesis.” Chem. Rev., 28, 71–142, 1941.

    Article  CAS  Google Scholar 

  31. T.L. Hill and M.H. Morales, “On ‘High Energy Phosphate Bonds’ of Biochemical Interest.” J. Am. Chem. Soc., 73, 1656–1660, 1951.

    Article  CAS  Google Scholar 

  32. A. Pullman and B. Pullman, Quantum Biochemistry, Interscience, New York, 1963.

    Google Scholar 

  33. D.B. Boyd and W.N. Lipscomb, “Electronic Structures for Energy-rich Phosphates.” J. Theor. Biol., 25, 403–420, 1969.

    Article  PubMed  CAS  Google Scholar 

  34. P. George, R.J. Witonsky, M. Trachtman, C. Wu, W. Dorwart, L. Richman, W. Richman, F. Shurayh, and B. Lentz, “’squiggle-H2O’ An Enquiry into the Importance of Solvation Effects in Phosphate Ester and Anhydride Reactions.” Biochim. Biophys. Acta, 223, 1–15, 1970.

    Article  PubMed  CAS  Google Scholar 

  35. M.D. Hayes, L.G. Kenyon, and P.A. Kollman, “Theoretical Calculations of the Hydrolysis Energies of Some ‘High Energy’ Molecules. 2. A Survey of Some Biologically Important Hydrolytic Reactions.” J. Chem. Soc., 100, 4331–4340, 1978.

    Article  CAS  Google Scholar 

  36. L. de Meis, “Role of Water in the Energy of Hydrolysis of Phosphate Compounds—Energy Transduction in Biological Membranes” Biochim. Biophys. Acta, 973, 333–349, 1989.

    Article  PubMed  Google Scholar 

  37. C.S. Ewig and J.R. Van Wazer, “Ab Initio Structures of Phosphoric Acids and Ester. 3. The P-O-P Bridged Compounds H4P2O2n−1 for n=1 to 4.” J. Am. Chem. Soc., 110 79–86, 1988.

    Article  CAS  Google Scholar 

  38. R. Cross, “Introduction: The Mechanobiochemistry of Molecular Motors.” Essays Biochem. Mol. Motors, 35, 1–2, 2000.

    CAS  Google Scholar 

  39. G. Oster and H. Wang, “How Protein Motors Convert Chemical Energy into Mechanical Work.” In Molecular Motors, M. Schliwa, Ed., Wiley-VCH GmbH and Co. KgaA, Weinheim, 2003, pp. 207–227.

    Google Scholar 

  40. Two excellent and current biochemistry texts may be sought for more background and additional detail: D. Voet, J.G. Voet, and C.W. Pratt, Fundamentals of Biochemistry, John Wiley & Sons, Inc. New York, 1999, and Berg et al.46

    Google Scholar 

  41. J.M. Berg, J.L. Tymoczko, and L. Stryer, Biochemistry, Fifth Edition, W.H. Freeman and Company, New York, 2002.

    Google Scholar 

  42. D. Voet and J.G. Voet, Biochemistry, Second Edition, John Wiley & Sons, 1995, p. 587.

    Google Scholar 

  43. M. Saraste, “Oxidative Phosphorylation as the fin de siecleScience, 283, 1488–1493, 1999.

    Article  PubMed  CAS  Google Scholar 

  44. B.E. Schultz and S.I. Chan, “Structures and Proton-pumping Strategies of Mitochondrial Respiratory Enzymes.” Annu. Rev. Biophys. Biomol. Struct., 30, 23–65, 2001.

    Article  PubMed  CAS  Google Scholar 

  45. P. Mitchell, “Keilin’s Respiratory Chain Concept and its Chemiosmotic Consequences.” Science, 206, 1148–1159, 1979.

    Article  PubMed  CAS  Google Scholar 

  46. T.L. Hill and E. Eisenberg, “Can Free Energy Transduction be Localized at Some Crucial Part of the Enzymatic Cycle?.” Quart. Rev. Biophys., 14, 463–511, 1981.

    Article  CAS  Google Scholar 

  47. N. Grigorieff, “Three-dimensional Structure of Bovine NADH:Ubiquinone Oxidoreductase (Complex I) at 22Å in Ice.” J. Mol. Biol., 277, 1033–1048, 1998.

    Article  PubMed  CAS  Google Scholar 

  48. B. Böttcher, D. Scheide, M. Hasterberg, L. Nagel-Stegerand, and T. Friedrich, “A Novel, Enzymatically Active Conformation of the Escherichia coli NADH: Ubiquinone Oxidoreductase (Complex I).” J. Biol. Chem., 277, 17970–17977, 2002.

    Article  PubMed  CAS  Google Scholar 

  49. V. Yankovskaya, R. Horsefield, S. Törnroth, C. Luna-Chavez, H. Miyoshi, C. Léger, B. Byrne, G. Cecchini, and S. Iwata, “Architecture of Succinate Dehydrogenase and Reactive Oxygen Species Generation.” Science, 299, 700–704, 2003.

    Article  PubMed  CAS  Google Scholar 

  50. C.R.D. Lancaster, A. Kröger, M. Auer, and H. Michel, “Structure of Fumarate Reductase from Wolinella succinogenes at 2.2Å resolution.” Nature, 402, 377–385, 1999.

    Article  PubMed  CAS  Google Scholar 

  51. D. Xia, C.A. Yu, H. Kim, J.Z. Xia, A.M. Kachurin, L. Zhang, L. Yu, and J. Deisenhofer, “Crystal of the Cytochrome bc1 Complex from Bovine Heart Mitochondria.” Science, 277, 60–66, 1997.

    Article  PubMed  CAS  Google Scholar 

  52. Z. Zhang, L. Huang, V.M. Shulmeister, Y.I. Chi, K.K. Kim, L.W. Hung, A.R. Crofts, E.A. Berry, and S.H. Kim, “Electron Transfer by Domain Movement in Cytochrome bc1.” Nature, 392, 677–684, 1998.

    Article  PubMed  CAS  Google Scholar 

  53. S. Iwata, J.W. Lee, K. Okada, J.K. Lee, M. Iwata, B. Rasmussen, T.A. Link, S. Ramaswamy, and B.K. Jap, “Complete Structure of the 11-Subunit Bovine Mitochondrial Cytochrome bc1 Complex.” Science, 281, 64–71, 1998.

    Article  PubMed  CAS  Google Scholar 

  54. C. Lange and C. Hunte, “Crystal Structure of the Yeast Cytochrome bc1 Complex with its Bound Substrate Cytochrome c.” Proc. Natl. Acad. Sci. U.S.A., 99, 2800–2805, 2002.

    Article  PubMed  CAS  Google Scholar 

  55. A.R. Crofts, V.P. Shinkarev, S.A. Dikanov, R.I. Samoilova, and D. Kolling, “Interactions of Quinone with Iron-sulfur Protein of the bc1 Complex: Is the Mechanism Spring-loaded?” Biochim. Biophys. Acta, 1555, 48–53, 2002.

    Article  PubMed  CAS  Google Scholar 

  56. D.W. Urry, R.D. Harris, and K.U. Prasad, “Chemical Potential Driven Contraction and Relaxation by Ionic Strength Modulation of an Inverse Temperature Transition,” J. Am. Chem. Soc., 110, 3303–3305, 1988.

    Article  CAS  Google Scholar 

  57. D.W. Urry, B. Haynes, H. Zhang, R.D. Harris, and K.U. Prasad, “Mechanochemical Coupling in Synthetic Polypeptides by Modulation of an Inverse Temperature Transitions.” Proc. Natl. Acad. Sci. U.S.A., 85, 3407–3411, 1988.

    Article  PubMed  CAS  Google Scholar 

  58. T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, and S. Yoshikawa, “Structures of Metal Sites of Oxidized Bovine Heart Cytochrome c Oxidase at 2.8Å.” Science, 269, 1069–1074, 1995.

    Article  PubMed  CAS  Google Scholar 

  59. T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, and S. Yoshikawa, “The Whole Structure of the 13-Subunit Oxidixed Cytochrome c Oxidase at 2.8Å.” Sciences, 272, 1136–1144, 1996.

    CAS  Google Scholar 

  60. J.A. García-Horsman, B. Barquera, J. Rumbly, J. Ma, and R.B. Gennis, “The Superfamily of Heme-copper Respiratory Oxidases,” J. Bacteriol., 176, 5587–5600, 1994.

    PubMed  Google Scholar 

  61. J. Abramson, S. Riistama, G. Larsson, A. Jasiatis, M. Svensson-Ek, L. Laakkonen, A. Puustinen, S. Iwata, and M. Wikstrom, “The Structure of the Ubiquinol Oxidase from E. coli and its Ubiquinone Binding Site,” Nature Struct. Biol., 7, 910–917, 2000.

    Article  PubMed  CAS  Google Scholar 

  62. S. Yoshikawa, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, E. Yamashita, N. Inoue, M. Yao, M.J. Fel, C.P. Libeu, T. Mizushima, H. Yamaguchi, T. Tomizaki, and T. Tsukihara, “Redox-coupled Crystal Structural Changes in Bovine Heart Cytochrome c Oxidase,” Science, 280, 1723–1729, 1998.

    Article  PubMed  CAS  Google Scholar 

  63. M. Wikström and M.I. Verkhovsky, “Proton Translocation by Cytochrome c Oxidase in Different Phases of the Catalytic Cycle,” Biochim. Biophys. Acta., 1555, 128–132, 2002.

    Article  PubMed  Google Scholar 

  64. M. Wikström, “Mechanism of Proton Translocation by Cytochrome c Oxidase: A New Fourstroke Histidine Cycle,” Biochim. Biophys. Acta., 1458, 188–198, 2000.

    Article  PubMed  Google Scholar 

  65. M. Svensson-Ek, J. Abramson, G. Larsson, S. Törnroth, P. Brzezinski, and S. Iwata, “The X-ray Crystal Structures of Wild-type and EQ (I-286) Mutant Cytochrome c Oxidases from Rhodobacter sphaeroides. J. Mol. Biol., 321, 329–339, 2002.

    Article  PubMed  CAS  Google Scholar 

  66. R. Mitchell, P. Mitchell, and P.R. Rich, “Protonation of the Catalytic Intermediates of Cytochrome c Oxidase,” Biochim. Biophys. Acta., 1101, 188–191, 1992.

    PubMed  CAS  Google Scholar 

  67. R. Mitchell and P.R. Rich, “Proton Uptake by Cytochrome c Oxidase on Reduction and on Ligand Binding,” Biochim. Biophys. Acta., 1186, 19–26, 1994.

    Article  PubMed  CAS  Google Scholar 

  68. N. Capitanio, T.V. Vygodina, G. Capitanio, A.K. Konstantinov, P. Nichols, and S. Papa, “Redox-Linked Proteolytic Reactions in Soluble Cytochrome-c Oxidase from Beef Heart Mitochondria: Redox Bohr Effects.” Biochim. Biophys. Acta., 1318, 255–265, 1997.

    Article  PubMed  CAS  Google Scholar 

  69. D.W. Urry and H. Eyring, “Optical Rotatory Disperson Studies of L-Histidine Chelation,” J. Am. Chem. Soc., 86, 4574–4580, 1964.

    Article  CAS  Google Scholar 

  70. K. Kinosita, R. Yasuda, and H. Noji, “F1-ATPase: A Highly Efficient Rotary ATP Machine,” Essays Biochem. Mol. Motors, 35, 3–18, 2000.

    CAS  Google Scholar 

  71. R.I. Menz, J.E. Walker, and A.G.W. Leslie, “Structure of Bovine Mitochondrial F1-ATPase with Nucleotide Bound to All Three Catalytic Sites: Implications for Mechanism of Rotary Catalysis,” Cell, 106, 331–341, 2001.

    Article  PubMed  CAS  Google Scholar 

  72. R.H. Fillingame, “Molecular Rotary Motors.” Science, 286, 1687–1688, 1999.

    Article  PubMed  CAS  Google Scholar 

  73. P.L. Pedersen, Y.H. Ko, and S. Hong, “ATP Synthases in the Year 2000: Evolving Views about the Structures of These Remarkable Enzyme Complexes,” J. Bioenerget. Biomembranes, 32, 325–332, 2000.

    Article  CAS  Google Scholar 

  74. R.H. Fillingame, C.M. Angevine, and O.Y. Dmitriev, “Coupling Proton Movements to c-Ring Rotation in F1F0 ATP Synthase: Aqueous Access Channels and Helix Rotations at the a-c Interface,” Biochim. Biophys. Acta, 1555, 29–36, 2002.

    Article  PubMed  CAS  Google Scholar 

  75. A. Horak, H. Horak, and M. Packer, “Subunit Composition and Cold Stability of the Pea Cotyledon Mitochondrial F1-ATPase.” Biochim. Biophys. Acta, 893, 190–196, 1987.

    Article  CAS  Google Scholar 

  76. M.E. Pullman, H.S. Penefsky, A. Datta, and E. Racker, “Partial Resolution of the Enzymes Catalyzing Oxidative Phosphorylation. I. Purification and Properties of Soluble, Dinitrophenol-stimulated Adenosine Triphosphatase,” J. Biol. Chem., 235, 3322–3329, 1960.

    PubMed  CAS  Google Scholar 

  77. D. Stock, A.G.W. Leslie, and J.E. Walker, “Molecular Architecture of the Rotary Motor in ATP Synthase,” Science, 286, 1700–1705, 1999.

    Article  PubMed  CAS  Google Scholar 

  78. J.P. Abrahams, A.G.W. Leslie, R. Lutter, and J.E. Walker, “Structure at 2.8Å of F1-ATPase from Bovine Heart Mitochondria,” Nature (Lond.), 370, 621–628, 1994.

    Article  CAS  Google Scholar 

  79. P.B. Boyer, “New Insights into One of Nature’s Remarkable Catalysts, the ATP Synthase.” Mol. Cell Prev., 8, 246–247, 2001.

    Article  CAS  Google Scholar 

  80. P.D. Boyer, “The Binding Change Mechanism for ATP Synthase—Some Probabilities and Possibilities,” Biochim. Biophys. Acta, 1140, 215–220, 1993.

    Article  PubMed  CAS  Google Scholar 

  81. P.D. Boyer, “The ATP Synthase—A Splendid Molecular Machine,” Annu. Rev. Biochem., 66, 717–749, 1997.

    Article  PubMed  CAS  Google Scholar 

  82. L. Pauling, “The Energy of Single Bonds and the Relative Electonegativities of Atoms.” J. Am. Chem. Soc., 54, 3570–3582, 1932.

    Article  CAS  Google Scholar 

  83. L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, Third Edition, Cornell University Press, Ithaca, New York, 1960, p. 93.

    Google Scholar 

  84. R.I. Menz, A.G. Leslie, and J.E. Walker, “The Structure and Nucleotide Occupancy of Bovine Mitochondrial F1-ATPase are not Influenced by Crystallization at High Concentrations of Nucleotide,” FEBS Lett., 494, 11–14, 2001.

    Article  PubMed  CAS  Google Scholar 

  85. K. Braig, R.I. Menz, M.G. Montgomery, A.G.W. Leslie, and J.E. Walker, “Structure of Bovine Mitochondrial F1-ATPase Inhibited by Mg(2+) ADP and Aluminum Fluoride.” Structure (Lond.), 8, 567–573, 2000.

    Article  CAS  Google Scholar 

  86. E. Cabezon, M.G. Montgomery, A.G.W. Leslie, and J.E. Walker, “The Structure of Bovine Mitochondrial F1-ATPase in Complex with its Regulatory Protein If1,” Nature Struct. Biol., 10, 744–750.

    Google Scholar 

  87. H. Noji, R. Yasuda, M. Yoshida and K. Kinosita, “Direct Observation of the Rotation of F1-ATPase,” Nature (Lond.), 386, 299–302, 1997.

    Article  CAS  Google Scholar 

  88. H. Noji, “Amersham Pharmacia Biotech & Science Prize: The Rotary Enzyme of the Cell: The Rotation of F1-ATPase,” Science, 282, 1844–1845, 1998.

    Article  PubMed  CAS  Google Scholar 

  89. K. Kinosita Jr., R. Yasuda, H. Noji, and K. Adachi, “A Rotary Motor that can Work at Near 100% Efficiency,” Philos. Trans. R. Soc. Lond. B, 355, 473–489, 2000.

    Article  CAS  Google Scholar 

  90. Dorland’s Illustrated Medical Dictionary, 27th Edition, W.B. Saunders, 1985, p. 1468.

    Google Scholar 

  91. D. Voet, J.G. Voet & C.W. Pratt, Fundamentals of Biochemistry, John Wiley & Sons, New York, 1999, Figures 7–22 and 7–23, p. 181.

    Google Scholar 

  92. D. Voet and J.G. Voet, Biochemistry, Second Edition, John Wiley & Sons, 1995, Figure 34–65, p. 1247, and 34–67, p. 1249.

    Google Scholar 

  93. A.F. Huxley and R. Niedergerke, “Interference Microscopy of Living Muscle Fibers.” Nature, 173, 971–973, 1954.

    Article  PubMed  CAS  Google Scholar 

  94. A.F. Huxley, “Muscle Structure and Theories of Contraction,” Prog. Biophys. Biophys. Chem., 7, 255–318, 1957.

    PubMed  CAS  Google Scholar 

  95. D. Voet, J.G. Voet, and C.W. Pratt, Fundamentals of Biochemistry, John Wiley & Sons, New York, 1999, Figure 7–29, p. 183.

    Google Scholar 

  96. I. Rayment, W.R. Rypniewski, K. Schmidt-Bäse, R. Smith, D.R. Tomchick, M.M. Benning, D.A. Winkelman, G. Wesenberg, and H.M. Holden, “Three-Dimensional Structure of Myosin Subfragment-1: A Molecular Motor,” Science, 261, 50–58, 1993.

    Article  PubMed  CAS  Google Scholar 

  97. I. Rayment, H.M. Holden, M. Whittaker, C.B. Yohn, M. Lorenz, K.C. Holmes, and R.A. Milligan, “Structure of the Actin-Myosin Complex and its Implications for Muscle Contraction.” Science, 261, 58–65, 1993.

    Article  PubMed  CAS  Google Scholar 

  98. I. Rayment, C. Smith, and R.G. Yount, “The Active Site of Myosin,” Annu. Rev. Physiol., 58, 671–702, 1996.

    Article  PubMed  CAS  Google Scholar 

  99. Y. Lecarpentier, D. Chemla, J.C. Pourny, and F.-X. Blanc, “Myosin Cross Bridges in Skeletal Muscles: ‘Rower’ Molecular Motors,” J. Appl. Physiol., 91, 2479–2486, 2001.

    PubMed  CAS  Google Scholar 

  100. R.W. Lymm and E.W. Taylor, “Mechanism of ATP Hydrolysis by Actomyosin.” Biochemistry, 10, 4617–4624, 1971.

    Article  Google Scholar 

  101. T. Duke, “Cooperativity of Myosin Molecules Through Strain-dependent Chemistry,” Philos. Trans. R. Soc. Lond. B, 355, 529–538, 2000.

    Article  CAS  Google Scholar 

  102. D.W. Urry, “Function of the F1-motor (F1-ATPase) of ATP synthase by Apolar-polar Repulsion through Internal Interfacial Water.” Cell Biology International, 30,(1), 44–55, 2006.

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). Consilient Mechanisms for Protein-based machines of Biology. In: What Sustains Life?. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4562-5_8

Download citation

Publish with us

Policies and ethics