Advertisement

Consilient Mechanisms for Protein-based machines of Biology

Abstract

Biology thrives near a movable cusp of insolubility, and the forces that, in a positively cooperative manner, power the molecular machines of biology drive spatially localized hydrophobic protein domains back and forth across thermodynamically movable water-solubility-insolubility divides.

Keywords

Nucleotide Binding Site Hydrophobic Association Hydrophobic Hydration Actin Binding Site Stereo View 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.O. Wilson, Consilience: The Unity of Knowledge. Alfred E. Knopf, New York, 1998, p. 8.Google Scholar
  2. 2.
    C. Lange and C. Hunte, “Crystal structure of the yeast cytochrome bc1 complex with its bound substrate cytochrome c.” Proc Nat. Acad. Sci. USA, 99, 2800–2805, 2002.PubMedCrossRefGoogle Scholar
  3. 3.
    D.M. Himmel, S. Gourinath, L. Reshetnikova, Y. Shen, A.G. Szent-Gyorgyi, and C. Cohen, “Crystallographic Findings on the Internally Uncoupled and Near-rigor States of Myosin: Further Insights into the Mechanics of the Motor.” Proc. Natl. Acad. Sci. U.S.A., 99, 12645–12650, 2002.PubMedCrossRefGoogle Scholar
  4. 4.
    A.J. Fisher, C.A. Smith, J. Thoden, R. Smith, K. Sutoh, H.M. Holden, and I. Rayment, “Structural Studies of Myosin: Nucleotide Complexes: A Revised Model for the Molecular Basis of Muscle Contraction.” Biophys. J., 68, 19s–28s, 1995.PubMedGoogle Scholar
  5. 5.
    J. Monod, “On Symmetry and Function in Biological Systems.” In Nobel Symposium 11: Symmetry and Function of Biological Systems at the Macromolecular Level, A. Engstrom and B. Strandberg, Eds., Almqvist & Wiksell Forlag AB, Stockholm, 1968, p. 1527. Also reprinted in Selected Papers in molecular Biology by Jacques Monod, A. Lwoff and A. Ullmann, Eds., Academic Press, New York, 1978, p. 708.Google Scholar
  6. 6.
    M.F. Perutz, “Mechanisms of Cooperativity and Allosteric Regulation in Proteins.” Q. Rev. Biophys., 22, 139–236, 1989.PubMedGoogle Scholar
  7. 7.
    M.F. Perutz, Mechanisms of Cooperativity and Allosteric Regulation in Proteins. Cambridge University Press, Cambridge, 1990, page••.Google Scholar
  8. 8.
    D.W. Urry and T.M. Parker, “Mechanics of Elastin: Molecular Mechanism of Biological Elasticity and its Relevance to Contraction.” J. Muscle Res. Cell Motility, 23, 541–547, 2002.Google Scholar
  9. 9.
    J.T. Edsall, “Apparent Molal Heat Capacities of Amino Acids and Other Organic Compounds.” J. Am. Chem. Soc., 57, 1506–1507, 1935.CrossRefGoogle Scholar
  10. 10.
    J.A.V. Butler, “The Energy and Entropy of Hydration of Organic Compounds.” Trans. Faraday Soc., 33, 229–238, 1937.CrossRefGoogle Scholar
  11. 14.
    M.V. Stackelberg and H.R. Müller, “Zur Struktur der Gashydrate.” Naturwissenschaften, 38, 456, 1951.CrossRefGoogle Scholar
  12. 16.
    J.C. Rodríguez-Cabello, J. Reguera, M. Alonso, T.M. Parker, D.T. McPherson, and D.W. Urry, “Endothermic and Exothermic Components of an Inverse Temperature Transition for Hydrophobic Association by TMDSC.” Chem. Phys. Lett. 388, 127–131, 2004.CrossRefGoogle Scholar
  13. 17.
    J.E. Lennard-Jones, “The Equation of State of Gases and Critical Phenomena.” Physica, 4, 941–956, 1937.CrossRefGoogle Scholar
  14. 18.
    R.A. Buckingham, “The Classical Equation of State of Gaseous Helium, Neon and Argon.” Proc. R. Soc. A, 168, 264–283, 1938.CrossRefGoogle Scholar
  15. 20.
    D.J. Boorstin, The Seekers: The Story of Man’s Continuing Quest to Understand His World. Random House, New York, 1998, p. 22.Google Scholar
  16. 21.
    P.L. Privalov, “Cold Inactivation of Enzymes.” Crit. Rev. Biochem. Mol. Biol., 25, 281–305, 1990.PubMedGoogle Scholar
  17. 22.
    D.W. Urry, M.M. Long, and H. Sugano, “Cyclic Analog of Elastin Polyhexapeptide Exhibits an Inverse Temperature Transition Leading to Crystallization.” J. Biol. Chem., 253, 6301–6302, 1978.PubMedGoogle Scholar
  18. 23.
    G. Lenaz, “A Critical Appraisal of the Mitochondrial Coenzyme Q Pool.” FEBS Lett., 509, 151–155, 2001.PubMedCrossRefGoogle Scholar
  19. 24.
    C. Hunte, “Insights from the Structure of the Yeast Cytochromes bc1 Complex: Crystallization of Membrane Proteins with Antibody Fragments.” FEBS Lett., 504, 126–132, 2001.PubMedCrossRefGoogle Scholar
  20. 25.
    C. Hunte, J. Koepke, C. Lange, T. Rossmanith, and H. Michel, “Structure at 2.3 Å Resolution of Cytochrome bc1 Complex from the Yeast Saccaromyces cerevisiae Co-crystallized with an Antibody Fv Fagment.” Structure, 8, 669–684, 2000.PubMedCrossRefGoogle Scholar
  21. 26.
    D.W. Urry, “Five Axioms for the Functional Design of Peptide-Based Polymers as Molecular Machines and Materials: Principle for Macromolecular Assemblies.” Biopolymers (Peptide Science), 47, 167–178, 1998.CrossRefGoogle Scholar
  22. 27.
    D.W. Urry, L.C. Hayes, D.C. Gowda, S.-Q. Peng, and N. Jing, “Electro-chemical Transduction in Elastic Protein-based Polymers.” Biochem. Biophys. Res. Commun., 210, 1031–1039, 1995.PubMedCrossRefGoogle Scholar
  23. 28.
    L. Hayes, “Effect of Hydrophobicity of Elastic Protein-based Polymers on Redox Potential.” Ph.D. Dissertation, The University of Alabama at Birmingham, 1998.Google Scholar
  24. 29.
    M.A. Khaled, V. Renugopalakrishnan, and D.W. Urry, “Proton Magnetic Resonance and Conformational Energy Calculations of Repeat Peptides of Tropoelastin: The Tetrapeptide.” J. Am. Chem. Soc., 98, 7547–7553, 1976.PubMedCrossRefGoogle Scholar
  25. 30.
    V. Renugopalakrishnan, M.A. Khaled, and D.W. Urry, “Proton Magnetic Resonance and Conformational Energy Calculations of Repeat Peptides of Tropoelastin: The Pentapeptide.” J. Chem. Soc., Perkin II, 111–119, 1978.Google Scholar
  26. 31.
    D.W. Urry, S.-Q. Peng, D.C. Gowda, T.M. Parker, and R.D. Harris, “Comparison of Electrostatic-and Hydrophobic-induced pKa Shifts in Polypentapeptides: The Lysine Residue.” Chem. Phys. Lett., 225, 97–103, 1994.CrossRefGoogle Scholar
  27. 32.
    D.W. Urry, S.-Q. Peng, and T.M. Parker, “Delineation of Electrostatic-and Hydrophobic-Induced pKa Shifts in Polypentapeptides: The Glutamic Acid Residue.” J. Am. Chem. Soc., 115, 7509–7510, 1993.CrossRefGoogle Scholar
  28. 33.
    R. Buchet, C.-H. Luan, K.U. Prasad, R.D. Harris, and D.W. Urry, “Dielectric Relaxation Studies on Analogs of the Polypentapeptide of Elastin.” J. Phys. Chem., 92, 511–517, 1988.CrossRefGoogle Scholar
  29. 34.
    W.P. Jencks, “Free Energies of Hydrolysis and Decarboxylation.” In Handbook of Biochemistry and Molecular Biology, Third Edition, G.D. Fasman, Ed., Physical and Chemical Data, Vol. I, CRC Press, Boca Raton, FL, 1976, pp. 296–304.Google Scholar
  30. 35.
    H.M. Kalckar, “The Nature of Energetic Coupling in Biological Synthesis.” Chem. Rev., 28, 71–142, 1941.CrossRefGoogle Scholar
  31. 36.
    T.L. Hill and M.H. Morales, “On ‘High Energy Phosphate Bonds’ of Biochemical Interest.” J. Am. Chem. Soc., 73, 1656–1660, 1951.CrossRefGoogle Scholar
  32. 37.
    A. Pullman and B. Pullman, Quantum Biochemistry, Interscience, New York, 1963.Google Scholar
  33. 38.
    D.B. Boyd and W.N. Lipscomb, “Electronic Structures for Energy-rich Phosphates.” J. Theor. Biol., 25, 403–420, 1969.PubMedCrossRefGoogle Scholar
  34. 39.
    P. George, R.J. Witonsky, M. Trachtman, C. Wu, W. Dorwart, L. Richman, W. Richman, F. Shurayh, and B. Lentz, “’squiggle-H2O’ An Enquiry into the Importance of Solvation Effects in Phosphate Ester and Anhydride Reactions.” Biochim. Biophys. Acta, 223, 1–15, 1970.PubMedCrossRefGoogle Scholar
  35. 40.
    M.D. Hayes, L.G. Kenyon, and P.A. Kollman, “Theoretical Calculations of the Hydrolysis Energies of Some ‘High Energy’ Molecules. 2. A Survey of Some Biologically Important Hydrolytic Reactions.” J. Chem. Soc., 100, 4331–4340, 1978.CrossRefGoogle Scholar
  36. 41.
    L. de Meis, “Role of Water in the Energy of Hydrolysis of Phosphate Compounds—Energy Transduction in Biological Membranes” Biochim. Biophys. Acta, 973, 333–349, 1989.PubMedCrossRefGoogle Scholar
  37. 42.
    C.S. Ewig and J.R. Van Wazer, “Ab Initio Structures of Phosphoric Acids and Ester. 3. The P-O-P Bridged Compounds H4P2O2n−1 for n=1 to 4.” J. Am. Chem. Soc., 110 79–86, 1988.CrossRefGoogle Scholar
  38. 43.
    R. Cross, “Introduction: The Mechanobiochemistry of Molecular Motors.” Essays Biochem. Mol. Motors, 35, 1–2, 2000.Google Scholar
  39. 44.
    G. Oster and H. Wang, “How Protein Motors Convert Chemical Energy into Mechanical Work.” In Molecular Motors, M. Schliwa, Ed., Wiley-VCH GmbH and Co. KgaA, Weinheim, 2003, pp. 207–227.Google Scholar
  40. 45.
    Two excellent and current biochemistry texts may be sought for more background and additional detail: D. Voet, J.G. Voet, and C.W. Pratt, Fundamentals of Biochemistry, John Wiley & Sons, Inc. New York, 1999, and Berg et al.46 Google Scholar
  41. 46.
    J.M. Berg, J.L. Tymoczko, and L. Stryer, Biochemistry, Fifth Edition, W.H. Freeman and Company, New York, 2002.Google Scholar
  42. 47.
    D. Voet and J.G. Voet, Biochemistry, Second Edition, John Wiley & Sons, 1995, p. 587.Google Scholar
  43. 48.
    M. Saraste, “Oxidative Phosphorylation as the fin de siecleScience, 283, 1488–1493, 1999.PubMedCrossRefGoogle Scholar
  44. 49.
    B.E. Schultz and S.I. Chan, “Structures and Proton-pumping Strategies of Mitochondrial Respiratory Enzymes.” Annu. Rev. Biophys. Biomol. Struct., 30, 23–65, 2001.PubMedCrossRefGoogle Scholar
  45. 50.
    P. Mitchell, “Keilin’s Respiratory Chain Concept and its Chemiosmotic Consequences.” Science, 206, 1148–1159, 1979.PubMedCrossRefGoogle Scholar
  46. 51.
    T.L. Hill and E. Eisenberg, “Can Free Energy Transduction be Localized at Some Crucial Part of the Enzymatic Cycle?.” Quart. Rev. Biophys., 14, 463–511, 1981.CrossRefGoogle Scholar
  47. 52.
    N. Grigorieff, “Three-dimensional Structure of Bovine NADH:Ubiquinone Oxidoreductase (Complex I) at 22Å in Ice.” J. Mol. Biol., 277, 1033–1048, 1998.PubMedCrossRefGoogle Scholar
  48. 53.
    B. Böttcher, D. Scheide, M. Hasterberg, L. Nagel-Stegerand, and T. Friedrich, “A Novel, Enzymatically Active Conformation of the Escherichia coli NADH: Ubiquinone Oxidoreductase (Complex I).” J. Biol. Chem., 277, 17970–17977, 2002.PubMedCrossRefGoogle Scholar
  49. 54.
    V. Yankovskaya, R. Horsefield, S. Törnroth, C. Luna-Chavez, H. Miyoshi, C. Léger, B. Byrne, G. Cecchini, and S. Iwata, “Architecture of Succinate Dehydrogenase and Reactive Oxygen Species Generation.” Science, 299, 700–704, 2003.PubMedCrossRefGoogle Scholar
  50. 55.
    C.R.D. Lancaster, A. Kröger, M. Auer, and H. Michel, “Structure of Fumarate Reductase from Wolinella succinogenes at 2.2Å resolution.” Nature, 402, 377–385, 1999.PubMedCrossRefGoogle Scholar
  51. 56.
    D. Xia, C.A. Yu, H. Kim, J.Z. Xia, A.M. Kachurin, L. Zhang, L. Yu, and J. Deisenhofer, “Crystal of the Cytochrome bc1 Complex from Bovine Heart Mitochondria.” Science, 277, 60–66, 1997.PubMedCrossRefGoogle Scholar
  52. 57.
    Z. Zhang, L. Huang, V.M. Shulmeister, Y.I. Chi, K.K. Kim, L.W. Hung, A.R. Crofts, E.A. Berry, and S.H. Kim, “Electron Transfer by Domain Movement in Cytochrome bc1.” Nature, 392, 677–684, 1998.PubMedCrossRefGoogle Scholar
  53. 58.
    S. Iwata, J.W. Lee, K. Okada, J.K. Lee, M. Iwata, B. Rasmussen, T.A. Link, S. Ramaswamy, and B.K. Jap, “Complete Structure of the 11-Subunit Bovine Mitochondrial Cytochrome bc1 Complex.” Science, 281, 64–71, 1998.PubMedCrossRefGoogle Scholar
  54. 59.
    C. Lange and C. Hunte, “Crystal Structure of the Yeast Cytochrome bc1 Complex with its Bound Substrate Cytochrome c.” Proc. Natl. Acad. Sci. U.S.A., 99, 2800–2805, 2002.PubMedCrossRefGoogle Scholar
  55. 60.
    A.R. Crofts, V.P. Shinkarev, S.A. Dikanov, R.I. Samoilova, and D. Kolling, “Interactions of Quinone with Iron-sulfur Protein of the bc1 Complex: Is the Mechanism Spring-loaded?” Biochim. Biophys. Acta, 1555, 48–53, 2002.PubMedCrossRefGoogle Scholar
  56. 61.
    D.W. Urry, R.D. Harris, and K.U. Prasad, “Chemical Potential Driven Contraction and Relaxation by Ionic Strength Modulation of an Inverse Temperature Transition,” J. Am. Chem. Soc., 110, 3303–3305, 1988.CrossRefGoogle Scholar
  57. 62.
    D.W. Urry, B. Haynes, H. Zhang, R.D. Harris, and K.U. Prasad, “Mechanochemical Coupling in Synthetic Polypeptides by Modulation of an Inverse Temperature Transitions.” Proc. Natl. Acad. Sci. U.S.A., 85, 3407–3411, 1988.PubMedCrossRefGoogle Scholar
  58. 63.
    T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, and S. Yoshikawa, “Structures of Metal Sites of Oxidized Bovine Heart Cytochrome c Oxidase at 2.8Å.” Science, 269, 1069–1074, 1995.PubMedCrossRefGoogle Scholar
  59. 64.
    T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, and S. Yoshikawa, “The Whole Structure of the 13-Subunit Oxidixed Cytochrome c Oxidase at 2.8Å.” Sciences, 272, 1136–1144, 1996.Google Scholar
  60. 65.
    J.A. García-Horsman, B. Barquera, J. Rumbly, J. Ma, and R.B. Gennis, “The Superfamily of Heme-copper Respiratory Oxidases,” J. Bacteriol., 176, 5587–5600, 1994.PubMedGoogle Scholar
  61. 66.
    J. Abramson, S. Riistama, G. Larsson, A. Jasiatis, M. Svensson-Ek, L. Laakkonen, A. Puustinen, S. Iwata, and M. Wikstrom, “The Structure of the Ubiquinol Oxidase from E. coli and its Ubiquinone Binding Site,” Nature Struct. Biol., 7, 910–917, 2000.PubMedCrossRefGoogle Scholar
  62. 67.
    S. Yoshikawa, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, E. Yamashita, N. Inoue, M. Yao, M.J. Fel, C.P. Libeu, T. Mizushima, H. Yamaguchi, T. Tomizaki, and T. Tsukihara, “Redox-coupled Crystal Structural Changes in Bovine Heart Cytochrome c Oxidase,” Science, 280, 1723–1729, 1998.PubMedCrossRefGoogle Scholar
  63. 68.
    M. Wikström and M.I. Verkhovsky, “Proton Translocation by Cytochrome c Oxidase in Different Phases of the Catalytic Cycle,” Biochim. Biophys. Acta., 1555, 128–132, 2002.PubMedCrossRefGoogle Scholar
  64. 69.
    M. Wikström, “Mechanism of Proton Translocation by Cytochrome c Oxidase: A New Fourstroke Histidine Cycle,” Biochim. Biophys. Acta., 1458, 188–198, 2000.PubMedCrossRefGoogle Scholar
  65. 70.
    M. Svensson-Ek, J. Abramson, G. Larsson, S. Törnroth, P. Brzezinski, and S. Iwata, “The X-ray Crystal Structures of Wild-type and EQ (I-286) Mutant Cytochrome c Oxidases from Rhodobacter sphaeroides. J. Mol. Biol., 321, 329–339, 2002.PubMedCrossRefGoogle Scholar
  66. 71.
    R. Mitchell, P. Mitchell, and P.R. Rich, “Protonation of the Catalytic Intermediates of Cytochrome c Oxidase,” Biochim. Biophys. Acta., 1101, 188–191, 1992.PubMedGoogle Scholar
  67. 72.
    R. Mitchell and P.R. Rich, “Proton Uptake by Cytochrome c Oxidase on Reduction and on Ligand Binding,” Biochim. Biophys. Acta., 1186, 19–26, 1994.PubMedCrossRefGoogle Scholar
  68. 73.
    N. Capitanio, T.V. Vygodina, G. Capitanio, A.K. Konstantinov, P. Nichols, and S. Papa, “Redox-Linked Proteolytic Reactions in Soluble Cytochrome-c Oxidase from Beef Heart Mitochondria: Redox Bohr Effects.” Biochim. Biophys. Acta., 1318, 255–265, 1997.PubMedCrossRefGoogle Scholar
  69. 74.
    D.W. Urry and H. Eyring, “Optical Rotatory Disperson Studies of L-Histidine Chelation,” J. Am. Chem. Soc., 86, 4574–4580, 1964.CrossRefGoogle Scholar
  70. 76.
    K. Kinosita, R. Yasuda, and H. Noji, “F1-ATPase: A Highly Efficient Rotary ATP Machine,” Essays Biochem. Mol. Motors, 35, 3–18, 2000.Google Scholar
  71. 77.
    R.I. Menz, J.E. Walker, and A.G.W. Leslie, “Structure of Bovine Mitochondrial F1-ATPase with Nucleotide Bound to All Three Catalytic Sites: Implications for Mechanism of Rotary Catalysis,” Cell, 106, 331–341, 2001.PubMedCrossRefGoogle Scholar
  72. 78.
    R.H. Fillingame, “Molecular Rotary Motors.” Science, 286, 1687–1688, 1999.PubMedCrossRefGoogle Scholar
  73. 79.
    P.L. Pedersen, Y.H. Ko, and S. Hong, “ATP Synthases in the Year 2000: Evolving Views about the Structures of These Remarkable Enzyme Complexes,” J. Bioenerget. Biomembranes, 32, 325–332, 2000.CrossRefGoogle Scholar
  74. 80.
    R.H. Fillingame, C.M. Angevine, and O.Y. Dmitriev, “Coupling Proton Movements to c-Ring Rotation in F1F0 ATP Synthase: Aqueous Access Channels and Helix Rotations at the a-c Interface,” Biochim. Biophys. Acta, 1555, 29–36, 2002.PubMedCrossRefGoogle Scholar
  75. 81.
    A. Horak, H. Horak, and M. Packer, “Subunit Composition and Cold Stability of the Pea Cotyledon Mitochondrial F1-ATPase.” Biochim. Biophys. Acta, 893, 190–196, 1987.CrossRefGoogle Scholar
  76. 82.
    M.E. Pullman, H.S. Penefsky, A. Datta, and E. Racker, “Partial Resolution of the Enzymes Catalyzing Oxidative Phosphorylation. I. Purification and Properties of Soluble, Dinitrophenol-stimulated Adenosine Triphosphatase,” J. Biol. Chem., 235, 3322–3329, 1960.PubMedGoogle Scholar
  77. 83.
    D. Stock, A.G.W. Leslie, and J.E. Walker, “Molecular Architecture of the Rotary Motor in ATP Synthase,” Science, 286, 1700–1705, 1999.PubMedCrossRefGoogle Scholar
  78. 84.
    J.P. Abrahams, A.G.W. Leslie, R. Lutter, and J.E. Walker, “Structure at 2.8Å of F1-ATPase from Bovine Heart Mitochondria,” Nature (Lond.), 370, 621–628, 1994.CrossRefGoogle Scholar
  79. 85.
    P.B. Boyer, “New Insights into One of Nature’s Remarkable Catalysts, the ATP Synthase.” Mol. Cell Prev., 8, 246–247, 2001.CrossRefGoogle Scholar
  80. 86.
    P.D. Boyer, “The Binding Change Mechanism for ATP Synthase—Some Probabilities and Possibilities,” Biochim. Biophys. Acta, 1140, 215–220, 1993.PubMedCrossRefGoogle Scholar
  81. 87.
    P.D. Boyer, “The ATP Synthase—A Splendid Molecular Machine,” Annu. Rev. Biochem., 66, 717–749, 1997.PubMedCrossRefGoogle Scholar
  82. 88.
    L. Pauling, “The Energy of Single Bonds and the Relative Electonegativities of Atoms.” J. Am. Chem. Soc., 54, 3570–3582, 1932.CrossRefGoogle Scholar
  83. 89.
    L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, Third Edition, Cornell University Press, Ithaca, New York, 1960, p. 93.Google Scholar
  84. 90.
    R.I. Menz, A.G. Leslie, and J.E. Walker, “The Structure and Nucleotide Occupancy of Bovine Mitochondrial F1-ATPase are not Influenced by Crystallization at High Concentrations of Nucleotide,” FEBS Lett., 494, 11–14, 2001.PubMedCrossRefGoogle Scholar
  85. 91.
    K. Braig, R.I. Menz, M.G. Montgomery, A.G.W. Leslie, and J.E. Walker, “Structure of Bovine Mitochondrial F1-ATPase Inhibited by Mg(2+) ADP and Aluminum Fluoride.” Structure (Lond.), 8, 567–573, 2000.CrossRefGoogle Scholar
  86. 92.
    E. Cabezon, M.G. Montgomery, A.G.W. Leslie, and J.E. Walker, “The Structure of Bovine Mitochondrial F1-ATPase in Complex with its Regulatory Protein If1,” Nature Struct. Biol., 10, 744–750.Google Scholar
  87. 93.
    H. Noji, R. Yasuda, M. Yoshida and K. Kinosita, “Direct Observation of the Rotation of F1-ATPase,” Nature (Lond.), 386, 299–302, 1997.CrossRefGoogle Scholar
  88. 94.
    H. Noji, “Amersham Pharmacia Biotech & Science Prize: The Rotary Enzyme of the Cell: The Rotation of F1-ATPase,” Science, 282, 1844–1845, 1998.PubMedCrossRefGoogle Scholar
  89. 95.
    K. Kinosita Jr., R. Yasuda, H. Noji, and K. Adachi, “A Rotary Motor that can Work at Near 100% Efficiency,” Philos. Trans. R. Soc. Lond. B, 355, 473–489, 2000.CrossRefGoogle Scholar
  90. 96.
    Dorland’s Illustrated Medical Dictionary, 27th Edition, W.B. Saunders, 1985, p. 1468.Google Scholar
  91. 97.
    D. Voet, J.G. Voet & C.W. Pratt, Fundamentals of Biochemistry, John Wiley & Sons, New York, 1999, Figures 7–22 and 7–23, p. 181.Google Scholar
  92. 98.
    D. Voet and J.G. Voet, Biochemistry, Second Edition, John Wiley & Sons, 1995, Figure 34–65, p. 1247, and 34–67, p. 1249.Google Scholar
  93. 99.
    A.F. Huxley and R. Niedergerke, “Interference Microscopy of Living Muscle Fibers.” Nature, 173, 971–973, 1954.PubMedCrossRefGoogle Scholar
  94. 100.
    A.F. Huxley, “Muscle Structure and Theories of Contraction,” Prog. Biophys. Biophys. Chem., 7, 255–318, 1957.PubMedGoogle Scholar
  95. 101.
    D. Voet, J.G. Voet, and C.W. Pratt, Fundamentals of Biochemistry, John Wiley & Sons, New York, 1999, Figure 7–29, p. 183.Google Scholar
  96. 102.
    I. Rayment, W.R. Rypniewski, K. Schmidt-Bäse, R. Smith, D.R. Tomchick, M.M. Benning, D.A. Winkelman, G. Wesenberg, and H.M. Holden, “Three-Dimensional Structure of Myosin Subfragment-1: A Molecular Motor,” Science, 261, 50–58, 1993.PubMedCrossRefGoogle Scholar
  97. 103.
    I. Rayment, H.M. Holden, M. Whittaker, C.B. Yohn, M. Lorenz, K.C. Holmes, and R.A. Milligan, “Structure of the Actin-Myosin Complex and its Implications for Muscle Contraction.” Science, 261, 58–65, 1993.PubMedCrossRefGoogle Scholar
  98. 104.
    I. Rayment, C. Smith, and R.G. Yount, “The Active Site of Myosin,” Annu. Rev. Physiol., 58, 671–702, 1996.PubMedCrossRefGoogle Scholar
  99. 105.
    Y. Lecarpentier, D. Chemla, J.C. Pourny, and F.-X. Blanc, “Myosin Cross Bridges in Skeletal Muscles: ‘Rower’ Molecular Motors,” J. Appl. Physiol., 91, 2479–2486, 2001.PubMedGoogle Scholar
  100. 107.
    R.W. Lymm and E.W. Taylor, “Mechanism of ATP Hydrolysis by Actomyosin.” Biochemistry, 10, 4617–4624, 1971.CrossRefGoogle Scholar
  101. 108.
    T. Duke, “Cooperativity of Myosin Molecules Through Strain-dependent Chemistry,” Philos. Trans. R. Soc. Lond. B, 355, 529–538, 2000.CrossRefGoogle Scholar
  102. 109.
    D.W. Urry, “Function of the F1-motor (F1-ATPase) of ATP synthase by Apolar-polar Repulsion through Internal Interfacial Water.” Cell Biology International, 30,(1), 44–55, 2006.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Personalised recommendations