Skip to main content

Consilient Mechanisms for Diverse Protein-based Machines: The Efficient Comprehensive Hydrophobic Effect

  • Chapter
  • 476 Accesses

Abstract

The machines of biology are of a mechanism more elemental than those of man’s design. Consider, for example, the intermittent internal combustion (e.g., gasoline-reciprocating piston) engine that performs the work of putting a vehicle in motion. Fuel is injected in a timely manner into a series of chambers; the fuel vapors are ignited in each chamber; a series of explosions of hot expanding gasses occur in properly timed sequence; the hot expanding gasses supply the energy that drives the pistons, that by means of connecting rods rotates the crankshaft, that through a clutch assembly and speed-changing gears rotates the drive shaft, that by means of a differential gear box rotates the wheels, that puts the vehicle in motion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.O. Wilson, Consilience, The Unity of Knowledge. Alfred E. Knopf, New York, 1998, page 8, gives a definition of the word consilience as providing a “common groundwork of explanation.”

    Google Scholar 

  2. E.O. Wilson, Consilience: The Unity of Knowledge. Alfred E. Knopf, New York, 1998, pp. 4–5.

    Google Scholar 

  3. D.W. Urry, “Physical Chemistry of Biological Free Energy Transduction as Demonstrated by Elastic Protein-based Polymers.” J. Phys. Chem. B, 101, 11007–11028, 1997.

    CAS  Google Scholar 

  4. Concepts Introduced During Development of Elastic Protein-based Polymers for Free Energy Transduction: The conclusions of this article can also be given in terms of the following chronological listing of the concepts introduced during the development of elastic protein-based polymers for free energy transduction: (1) the concept of the damping of internal chain dynamics on extension as the source of entropic elastomeric force, called the librational entropy mechanism of elasticity; (2) the concept of T t , the temperature of the hydrophobic folding and assembly transition, being used as the fundamental measure of hydrophobicity and providing a practical on-off switching capacity; (3) the generally obvious concept that raising the temperature from below to above T t is a means of performing mechanical work by cross-linked elastic protein-based polymers; (4) the concept of the ΔT t -mechanism wherein the value of T t is changed, rather than the temperature, as a means of achieving free energy transduction; (5) the concept of energy conversion by means of the coupling of different functional moieties by being part of the same hydrophobic folding and assembly domain arising out of, for example, (a) hydrophobic-induced pKa shifts, (b) hydrophobic-induced shift in redox potential, and (c) demonstrated coupling of carboxyl and redox functions to result in electrochemical transduction; (6) the concept of the competition for hydration between apolar (hydrophobic) and polar (e.g., charged) moieties to give rise to pKa shifts and positive cooperativity; (7) the concept of ‘poising’ for achieving higher efficiencies; (8) essential equivalence of the inverse temperature transition of a phase separation and the intramolecular phase separation of the hydrophobic folding of a globular protein or assembly of the protomer subunits to form a multisubunit globular protein such as phosphofructose kinase, that is, the extension to globular proteins; and (9) extension to all polymers where, however, the degree of expression of the above effects is limited due to the lack of the many advantages of protein-based polymers of Table I.” (From Urry.) 4

    Article  CAS  Google Scholar 

  5. D.W. Urry, “Molecular Machines: How Motion and Other Functions of Living Organisms Can Result from Reversible Chemical Changes”. Angew. Chem. [German], 105, 859–883, 1993; Angew. Chem. Int. Ed. Engl., 32, 819–841, 1993.

    Article  CAS  Google Scholar 

  6. D.W. Urry, “Elastic Biomolecular Machines: Synthetic Chains of Amino Acids, Patterned After Those in Connective Tissue, can Transform Heat and Chemical Energy into Motion”. Sci. Am. January 1995, 64–69.

    Google Scholar 

  7. D.W. Urry, “The Change in Gibbs Free Energy for Hydrophobic Association: Derivation and Evaluation by means of Inverse Temperature Transitions”. Chem. Phys. Letters, 399, 177–183, 2004.

    CAS  Google Scholar 

  8. D.W. Urry and T.M. Parker, “Mechanics of Elastin: Molecular Mechanism of Biological Elasticity and its Relevance to Contraction”. J. Muscle Res. Cell Motil., 23, issue 5–6 (2002); Special Issue: Mechanics of Elastic Biomolecules, H. Granzier, M. Kellermayer, W. Linke, Eds.

    Google Scholar 

  9. F. Franks, “Protein Destabilization at Low Temperatures.” Adv. Protein Chem., 46, 107–139, 1995.

    Google Scholar 

  10. P.L. Privalov, “Cold Inactivation of Enzymes.” Crit. Rev. Biochem. Mol. Biol., 25, 281–305, 1990.

    Article  PubMed  CAS  Google Scholar 

  11. The term inverse transition was first used in connection with the increase in order of the antibiotic stendomycin on raising the temperature (D.W. Urry and A. Ruiter, “Conformation of Polypeptide Antibiotics. VI. Circular Dichroism of Stendomycin.” Biochem. Biophys. Res. Commun., 38, 800–806, 1970). The term became specifically inverse temperature transition in relation to coacervation of elastin fragments that exhibited a phase separation with increased order on raising the temperature (B.C. Starcher, G. Saccomani, and D.W. Urry, “Coacervation and Ion-Binding Studies on Aortic Elastin.” Biochim. Biophys. Acta, 310, 481–486, 1973, and D.W. Urry, B. Starcher, and S.M. Partridge, “Coacervation of Solubilized Elastin Effects a Notable Conformational Change”. Nature, 222, 795–796, 1969).

    Article  PubMed  CAS  Google Scholar 

  12. P.J. Flory, Principles of Polymer Chemistry. Cornell University Press, Ithaca, New York, 1953, Figure 121.

    Google Scholar 

  13. M. Manno, A. Emanuele, V. Martorana, P.L. San Biagio, D. Bulone, M.B. Palma-Vitorelli, D.T. McPherson, J. Xu, T.M. Parker, and D.W. Urry, “Interaction of Processes on Different/time scales in a bioelastomer capable of performing energy conversion.” Biopolymers, 59, 51–64, 2001.

    Article  PubMed  CAS  Google Scholar 

  14. F. Sciortino, K.U. Prasad, D.W. Urry, and M.U. Palma, “Self-Assembly of Bioelastomeric Structures From Solutions: Mean Field Critical Behavior and Flory-Huggins Free-Energy of Interaction.” Biopolymers, 33, 743–52, 1993.

    Article  PubMed  CAS  Google Scholar 

  15. B.A. Cox, B.C. Starcher, and D.W. Urry, “Coacervation of α-Elastin Results in Fiber Formation.” Biochim. Biophys. Acta., 317, 209–213, 1973.

    PubMed  CAS  Google Scholar 

  16. B.A. Cox, B.C. Starcher, and D.W. Urry, “Coacervation of Tropoelastin Results in Fiber Formation.” J. Biol. Chem., 249, 997–998, 1974.

    PubMed  CAS  Google Scholar 

  17. D.W. Urry, M.M. Long, and H. Sugano, “Cyclic Analog of Elastin Polyhexapeptide Exhibits an Inverse Temperature Transition Leading to Crystallization.” J. Biol. Chem., 253, 6301–6302, 1978.

    PubMed  CAS  Google Scholar 

  18. W.J. Cook, H.M. Einspahr, T.L. Trapane, D.W. Urry, and C.E. Bugg, “Crystal Structure and Conformation of the Cyclic Trimer of a Repeat Pentapeptide of Elastin, Cyclo-(L-Valyl-L-prolylglycyl-L-valyglycyl)3.” J. Am. Chem. Soc., 102, 5502–5505, 1980.

    Article  CAS  Google Scholar 

  19. J.A.V. Butler, “The energy and entropy of hydration of organic compounds.” Transaction Faraday Society, 33, 229–238, 1937.

    Article  CAS  Google Scholar 

  20. H.S. Frank and M.E. Evans, “Free Volume and Entropy in Condensed Systems: III. Entropy in Binary Liquid Mixtures; Partial Molal Entropy in Dilute Solutions; Structure and Thermodynamics in Aqueous Electrolytes.” J. Chem. Phys., 13, 507–532, 1945.

    Article  CAS  Google Scholar 

  21. D.W. Urry, T.L. Trapane, and K.U. Prasad, “Phase-Structure Transitions of the Elastin Polypentapeptide-Water System Within the Framework of Composition-Temperature Studies.” Biopolymers, 24, 2345–2356, 1985.

    Article  PubMed  CAS  Google Scholar 

  22. D.W. Urry, D.T. McPherson, J. Xu, H. Daniell, C. Guda, D.C. Gowda, N. Jing, and T.M. Parker, “Protein-Based Polymeric Materials: Syntheses and Properties.” In The Polymeric Materials Encyclopedia: Synthesis, Properties and Applications, CRC Press, Boca Raton, pp. 7263–7279, 1996. See Figure 6.

    Google Scholar 

  23. F. Sciortino, M.U. Palma, D.W. Urry, and K.U. Prasad, “Nucleation and Accretion of Bioelastomeric Fibers at Biological Temperatures and Low Concentrations.” Biochem. Biophys. Res. Commun. 157, 1061–1066, 1988.

    Article  PubMed  CAS  Google Scholar 

  24. D.W. Urry, S-Q. Peng, J. Xu, and D.T. McPherson, “Characterization of Waters of Hydrophobic Hydration by Microwave Dielectric Relaxation.” J. Amer. Chem. Soc., 119, 1161–1162, 1997.

    Article  CAS  Google Scholar 

  25. D.W. Urry, D.C. Gowda, S.-Q. Peng, and T.M. Parker, “Non-linear Hydrophobic-induced pKa Shifts: Implications for Efficiency of Conversion to Chemical Energy.” Chem. Phys. Lett., 239, 67–74, 1995.

    Article  CAS  Google Scholar 

  26. D.W. Urry, S.Q. Peng, L.C. Hayes, D.T. McPherson, Jie Xu, T.C. Woods, D.C. Gowda, and A. Pattanaik, “Engineering Protein-based Machines to Emulate Key Steps of Metabolism (Biological Energy Conversion).” Biotechnol. Bioeng., 58, 175–190, 1998.

    Article  PubMed  CAS  Google Scholar 

  27. D.W. Urry, L. Hayes, C.X. Luan, D.C. Gowda, D. McPherson, J. Xu, and T. Parker, “ΔT t -Mechanism in the Design of Self-Assembling Structures,” In Self-assembling Peptide Systems in Biology, Medicine and Engineering. A. Aggeli, N. Boden, S. Zhang, Eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001, pp. 323–340.

    Google Scholar 

  28. D.W. Urry and M.M. Long, “Conformations of the Repeat Peptides of Elastin in Solution: An Application of Proton and Carbon-13 Magnetic Resonance to the Determination of Polypeptide Secondary Structure.” CRC Crit. Rev. Biochemistry, 4, 1–45, 1976.

    Article  CAS  Google Scholar 

  29. D.W. Urry, “Characterization of Soluble Peptides of Elastin by Physical Techniques.” In Methods in Enzymology, 82, 673–716, 1982. (L.W. Cunningham and D.W. Frederiksen, Eds.) Academic Press, Inc., New York, New York.

    Google Scholar 

  30. D.W. Urry, C.M. Venkatachalam, M.M. Long, and K.U. Prasad, “Dynamic β-Spirals and A Librational Entropy Mechanism of Elasticity.” In Conformation in Biol. (R. Srinivasan and R.H. Sarma, Eds.) G.N. Ramachandran Festschrift Volume, Adenine Press, USA, 11–27, 1982.

    Google Scholar 

  31. D.W. Urry, “Thermally Driven Self-assembly, Molecular Structuring and Entropic Mechanisms in Elastomeric Polypeptides.” In Mol. Conformation and Biol. Interactions (P. Balaram and S. Ramaseshan, Eds.) Indian Acad. of Sci., Bangalore, India, pp. 555–583, 1991.

    Google Scholar 

  32. D.W. Urry, T. Hugel, M. Seitz, H. Gaub, L. Sheiba, J. Dea, J. Xu, and T. Parker, “Elastin: A Representative Ideal Protein Elastomer.” Phil. Trans. R. Soc. Lond., B 357, 169–184, 2002.

    Article  CAS  Google Scholar 

  33. D.W. Urry, T. Hugel, M. Seitz, H. Gaub, L. Sheiba, J. Dea, J. Xu, L. Hayes, F. Prochazka, and T. Parker, In Ideal Protein Elasticity: The Elastin Model, P. Shewry and A. Bailey, Eds., Cambridge University Press, (in press) 2003.

    Google Scholar 

  34. L.B. Sandberg, J.G. Leslie, C.T. Leach, V.L. Torres, A.R. Smith, and D.W. Smith, “Elastin Covalent Structure as Determined by Solid State Amino Acid Sequencing.” Pathol. Biol., 33, 266–274, 1985.

    PubMed  CAS  Google Scholar 

  35. H. Yeh, N. Ornstein-Goldstein, Z. Indik, P. Sheppard, N. Anderson, J.C. Rosenbloom, G. Cicila, K. Yoon, and J. Rosenbloom, “Sequence Variation of Bovine Elastin mRNA due to Alternative Splicing.” J. Collagen Rel. Res., 7, 235–247, 1987.

    CAS  Google Scholar 

  36. G.J. Thomas, Jr., B. Prescott, and D.W. Urry, “Raman Amide Bands of Type-II β-Turns in Cyclo-(VPGVG)3 and Poly(VPGVG), and Implications for Protein Secondary Structure Analysis.” Biopolymers, 26, 921–934, 1987.

    Article  PubMed  CAS  Google Scholar 

  37. D. Volpin, D.W. Urry, I. Pasquali-Ronchetti, and L. Gotte, “Studies by Electron Microscopy on the Structure of Coacervates of Synthetic Polypeptides of Tropoelastin.” Micron, 7, 193–198, 1976.

    Google Scholar 

  38. D.W. Urry, C.M. Venkatachalam, M.M. Long, and K.U. Prasad, “Dynamic β-Spirals and a Librational Entropy Mechanism of Elasticity.” In Conformation in Biology, R. Srinivasan and R.H. Sarma, Eds., G.N. Ramachandran Festschrift Volume, Adenine Press, USA, 11–27, 1982.

    Google Scholar 

  39. D.K. Chang and D.W. Urry, “Polypentapeptide of Elastin: Damping of Internal Chain Dynamics on Extension.” J. Computational Chem., 10, 850–855, 1989.

    Article  CAS  Google Scholar 

  40. T. Hugel, M. Seitz, H. Gaub, and D. Urry, unpublished results.

    Google Scholar 

  41. C.A.J. Hoeve and P.J. Flory “Elastic Properties of Elastin.” Biopolymers, 13, 677–686, 1974.

    Article  PubMed  CAS  Google Scholar 

  42. T. Weis-Fogh and S.O. Andersen, “New Molecular Model for the Long-range Elasticity of Elastin.” Nature, 227, 718–721, 1970.

    Article  PubMed  CAS  Google Scholar 

  43. L.B. Alonso, B.J. Bennion, and V. Daggett, “Hydrophobic Hydration is an Important Source of Elasticity in Elastin-based Polymers.” J. Am. Chem. Soc., 123, 11991–11998, 2001.

    Article  PubMed  CAS  Google Scholar 

  44. Z.R. Wasserman and F.R. Salemme, “A Molecular Dynamics Investigation of the Elastomeric Restoring Force in Elastin.” Biopolymers, 29, 1613–1631, 1990.

    Article  PubMed  CAS  Google Scholar 

  45. P. J. Flory, “Molecular Interpretation of Rubber Elasticity.” Rubber Chem. Tech., 41, G41–G48, 1968.

    CAS  Google Scholar 

  46. C.-H. Luan, J. Jaggard, R.D. Harris, and D.W. Urry, “On the Source of Entropic Elastomeric Force in Polypeptides and Proteins: Backbone Configurational vs. Side Chain Solvational Entropy.” Int. J. Quant. Chem. Quant. Biol. Symp., 16, 235–244, 1989.

    CAS  Google Scholar 

  47. D.W. Urry, B. Haynes, H. Zhang, R.D. Harris, and K.U. Prasad, “Mechanochemical Coupling in Synthetic Polypeptides by Modulation of an Inverse Temperature Transition.” Proc. Natl. Acad. Sci. USA, 85, 3407–3411, 1988.

    Article  PubMed  CAS  Google Scholar 

  48. D.W. Urry, “Protein Folding and Assembly: An Hydration-Mediated Free Energy Driving Force.” In Protein Folding: Deciphering the Second Half of the Genetic Code. (Lila Gierasch and Johanathan King, Eds.), Am. Assoc. for the Advancement of Sci., Washington, D. C., 63–71, 1990.

    Google Scholar 

  49. D.W. Urry, J. Xu, W. Wang, L. Hayes, F. Prochazka, and T.M. Parker, “Development of Elastic Protein-based Polymers as Materials for Acoustic Absorption.” Mat. Res. Soc. Symp. Proc.: Materials Inspired by Biology, 774, 81–92, 2003.

    CAS  Google Scholar 

  50. D.W. Urry, T.C. Woods, L.C. Hayes, J. Xu, D.T. McPherson, M. Iwama, M. Furuta, T. Hayashi, M. Murata, and T. M. Parker, “Elastic Protein-Based Biomaterials: Elements of Basic Science, Controlled Release and Biocompatibility.” In: Tissue Engineering and Novel Delivery Systems, Marcel Dekker, Inc. New York, Chapter 2, pp. 31–54, 2004.

    Google Scholar 

  51. As reported in L.P. Wheeler, Josiah Willard Gibbs, the History of a Great Mind; Yale University Press: New Haven, CT, and London, 1952; pp 88–89, this statement was penned by J. Willard Gibbs in an 1881 letter to the American Academy of Arts and Sciences.

    Google Scholar 

  52. C.J. Heimbach, Photochemical Transduction by Hydrophobically Poised Bioelastic Proteins. Ph.D. Dissertation, The University of Alabama, Birmingham, 1998.

    Google Scholar 

  53. C.-H. Luan and D.W. Urry, “Elastic, Plastic, and Hydrogel Protein-based Polymers.” In Polymer Data Handbook, J.E. Mark, Ed., 1999, Oxford University Press, New York, pp. 78–89, Tables 1 and 3a.

    Google Scholar 

  54. D.W. Urry, L.C. Hayes, D.C. Gowda, S.-Q. Peng, and N. Jing, “Electro-chemical Transduction in Elastic Protein-based Polymers.” Biochem. Biophys. Res. Commun., 210, 1031–1039, 1995.

    Article  PubMed  CAS  Google Scholar 

  55. A. Pattanaik, D.C. Gowda, and D.W. Urry, “Phosphorylation and Dephosphorylation Modulation of an Inverse Temperature Transition.” Biochem. Biophys. Res. Comm., 178, 539–545, 1991.

    Article  PubMed  CAS  Google Scholar 

  56. C.-H. Luan, T. Parker, K.U. Prasad, and D.W. Urry, “DSC Studies of NaCl Effect on the Inverse Temperature Transition of Some Elastin-based Polytetra-, Polypenta-, and Polynonapeptides.” Biopolymers, 31, 465–475, 1991.

    Article  PubMed  CAS  Google Scholar 

  57. D.W. Urry, M.M. Long, R.D. Harris, and K.U. Prasad, “Temperature Correlated Force and Structure Development in Elastomeric Polypeptides: The Ile1 Analog of the Polypentapeptide of Elastin.” Biopolymers, 25, 1939–1953, 1986.

    Article  PubMed  CAS  Google Scholar 

  58. D.W. Urry, R.D. Harris, M.M. Long, and K.U. Prasad, “Polytetrapeptide of Elastin: Temperature Correlated Elastomeric Force and Structure Development” Int. J. Pept. Protein Res., 28, 649–660, 1986.

    Article  PubMed  CAS  Google Scholar 

  59. D.W. Urry, R.D. Harris, and K.U. Prasad, “Chemical Potential Driven Contraction and Relaxation by Ionic Strength Modulation of an Inverse Temperature Transition.” J. Am. Chem. Soc., 110, 3303–3305, 1988.

    Article  CAS  Google Scholar 

  60. D.W. Urry, L.C. Hayes, T.M. Parker, and R.D. Harris, “Baromechanical Transduction in a Model Protein by the ΔTt Mechanism.” Chem. Phys. Lett., 201, 336–340, 1993.

    Article  CAS  Google Scholar 

  61. D.W. Urry, L.C. Hayes, and D.C. Gowda, “Electromechanical Transduction: Reduction-driven Hydrophobic Folding Demonstrated in a Model Protein to Perform Mechanical Work.” Biochem. Biophys. Res. Commun., 204, 230–237, 1994.

    Article  PubMed  CAS  Google Scholar 

  62. D. W. Urry, “Engineers of Creation.” Chemistry in Britain, 39–42, 1996.

    Google Scholar 

  63. D.W. Urry, L.C. Hayes, D.C. Gowda, C.M. Harris, and R.D. Harris, “Reduction-driven Polypeptide Folding by the ΔTt Mechanism.” Biochem. Biophys. Res. Commun., 188, 611–617, 1992.

    Article  PubMed  CAS  Google Scholar 

  64. D.W. Urry, L.C. Hayes, D.C. Gowda, and T.M. Parker, “Pressure Effect on Inverse Temperature Transitions: Biological Implications.” Chem. Phys. Lett., 182, 101–106, 1991.

    Article  CAS  Google Scholar 

  65. L.A. Strzegowski, M.B. Martinez, D.C. Gowda, D.W. Urry, and D.A. Tirrell, “Photomodulation of the Inverse Temperature Transition of a Modified Elastin Poly(pentapeptide).” J. Am. Chem. Soc., 116, 813–814, 1994.

    Article  CAS  Google Scholar 

  66. D.W. Urry, S.-Q. Peng, L. Hayes, J. Jaggard, and R.D. Harris, “A New Mechanism of Mechanochemical Coupling: Stretch-induced Increase in Carboxyl pKa as a Diagnostic.” Biopolymers, 30, 215–218, 1990.

    Article  PubMed  CAS  Google Scholar 

  67. D.W. Urry and S.-Q. Peng, “Non-linear Mechanical Force-induced pKa Shifts: Implications for Efficiency of Conversion to Chemical Energy.” J. Am. Chem. Soc., 117, 8478–8479, 1995.

    Article  CAS  Google Scholar 

  68. R. Henze and D.W. Urry, “Dielectric Relaxation Studies Demonstrate a Peptide Librational Mode in the Polypentapeptide of Elastin.” J. Am. Chem. Soc., 107, 2991–2993, 1985.

    Article  CAS  Google Scholar 

  69. R. Buchet, C.-H. Luan, K.U. Prasad, R.D. Harris, and D.W. Urry, “Dielectric Relaxation Studies on Analogs of the Polypentapeptide of Elastin.” J. Phys. Chem., 92, 511–517, 1988.

    Article  CAS  Google Scholar 

  70. I.Z. Steinberg, A. Oplatka, and A. Katchalsky, “Mechanochemical Engines.” Nature, 210, 568–571, 1966.

    Article  CAS  Google Scholar 

  71. M.V. Stackelberg and H.R. Müller, “Zur Struktur der Gashydrate.” Naturwissenschaften, 38, 456, 1951; M.V. Stackelberg and H.R. Müller, “Feste Gashydrate II: Struktur und Raumchemie.” Z. Elektochem., 54, 25–39, 1954.

    Article  Google Scholar 

  72. M.M. Teeter, “Hydrophobic Protein at Atomic Resolution: Pentagonal Rings of Water Molecules in Crystals of Crambin.” Proc. Natl. Acad. Sci. U.S.A., 81, 6014–6018, 1984.

    Article  PubMed  CAS  Google Scholar 

  73. D.W. Urry, S.-Q. Peng, and T.M. Parker, “Delineation of Electrostatic-and Hydrophobic-Induced pKa Shifts in Polypentapeptides: The Glutamic Acid Residue.” J. Am. Chem. Soc., 115, 7509–7510, 1993.

    Article  CAS  Google Scholar 

  74. D.W. Urry, C.-H. Luan, R.D. Harris, and K.U. Prasad, “Aqueous Interfacial Driving Forces in the Folding and Assembly of Protein (Elastin)-Based Polymers: Differential Scanning Calorimetry Studies.” Polym. Preprints, Div. Polym. Chem., Am. Chem. Soc., 31, 188–189, 1990.

    CAS  Google Scholar 

  75. A. Katchalsky, S. Lifson, I. Michaeli, and M. Zwick, “Elementary Mechanochemical Processes.” In Size & Shape of Contractile Polymers: Conversion of Chemical & Mechanical Energy. Pergamon Press, New York, 1960, pp. 1–40, see page 11.

    Google Scholar 

  76. J. Wyman, “Allosteric Effects in Hemoglobin.” Cold Spring Harbor Symp. Quant. Biol., 28, 483–489, 1963.

    CAS  Google Scholar 

  77. A.V. Hill, “The Possible Effect of the Aggregation of Hemoglobin on its Dissociation Curves.” Proceedings of the Physiological Society, J. Physiol., 40, iv–vii, 1910, and A.V. Hill J. Biochem., 7, 471–480, 1913.

    Google Scholar 

  78. D.W. Urry, S.-Q. Peng, D.C. Gowda, T.M. Parker, and R.D. Harris, “Comparison of Electrostatic-and Hydrophobic-induced pKa Shifts in Polypentapeptides: The Lysine Residue.” Chem. Phys. Lett., 225, 97–103, 1994.

    Article  CAS  Google Scholar 

  79. D.W. Urry, S.-Q. Peng, T.M. Parker, D.C. Gowda, and R.D. Harris, “Relative Significance of Electrostatic-and Hydrophobic-Induced pKa Shifts in a Model Protein: The Aspartic Acid Residue.” Angew. Chem. [German], 105, 1523–1525, 1993; Angew. Chem. Int. Ed. Engl., 32, 1440–1442, 1993.

    Article  CAS  Google Scholar 

  80. D.W. Urry, D.C. Gowda, S.-Q. Peng, T.M. Parker, N. Jing, and R.D. Harris, “Nanometric Design of Extraordinary Hydrophobicity-induced pKa Shifts for Aspartic Acid: Relevance to Protein Mechanisms.” Biopolymers, 34, 889–896, 1994, Figures 4 and 5B.

    Article  PubMed  CAS  Google Scholar 

  81. D.W. Urry, D.T. McPherson, J. Xu, H. Daniell, C. Guda, D.C. Gowda, N. Jing, and T.M. Parker, “Protein-based Polymeric Materials: Syntheses and Properties.” In The Polymeric Materials Encyclopedia: Synthesis, Properties and Applications. CRC Press, Boca Raton, FL, pp. 7263–7279, 1996.

    Google Scholar 

  82. T. Cooper Woods, Protein-based polymers as Delivery Vehicles for Antisense Oligonucleotides. Ph.D. Dissertation, University of Alabama, Birmingham, 1998.

    Google Scholar 

  83. L. Hayes, Effect of Hydrophobicity of Elastic Protein-based Polymers on Redox Potential. Ph.D. Dissertation, University of Alabama, Birmingham, 1998.

    Google Scholar 

  84. M.F. Perutz, “Mechabnisms of Cooperativity and Allosteric Regulation in Proteins.” Q. Rev. Biophys., 22, 139–236, 1989.

    Article  PubMed  CAS  Google Scholar 

  85. C. Bohr, K.A. Hasselbalch, and A. Krogh, “Uber einem in biologischen Beziehung wichtigen Einfluss, den die Kohlensaurenspannung des Blutes auf dessen Sauerstoffbinding übt.” Skand. Arch. Physiol., 16, 401–412, 1904.

    Google Scholar 

  86. G. S. Adair, “The Hemoglobin System. VI. The Oxygen Dissociation Curve of Hemoglobin.” J. Biol. Chem., 63, 529–545, 1925.

    CAS  Google Scholar 

  87. J. Monod, J.-P. Changeux, and F. Jacob, “Allosteric proteins and molecular control systems.” J. Mol. Biol., 6, 306–329, 1963.

    Article  PubMed  CAS  Google Scholar 

  88. J. Monod, J. Wyman, and J.-P. Changeux, “On the nature of allosteric transitions: a plausible model.” J. Mol. Biol., 12, 88–118, 1965.

    Article  PubMed  CAS  Google Scholar 

  89. D.E. Koshland, G. Nemethy, and D. Filmer, “Comparison of experimental binding data and theoretical models in proteins containing subunits.” Biochemistry, 5, 365–385, 1966.

    Article  PubMed  CAS  Google Scholar 

  90. J. Monod, “On Symmetry and Function in Biological Systems.” In Nobel Symposium 11: Symmetry and Function of Biological Systems at the Macromolecular Level. (A. Engstrom and B. Strandberg, eds.), Almqvist & Wiksell Forlag AB, Stockholm, 1968, page 1527. Also reprinted in Selected Papers in Molecular Biology by Jacques Monod, A. Lwoff and A. Ullmann, Eds Academic Press, 1978, page 708.

    Google Scholar 

  91. G. Weber, Protein Interactions. Chapman and Hall, New York, 1992, page 104.

    Google Scholar 

  92. A. Katchalsky, “Solutions of Polyelectrolytes and Mechanochemical Systems.” J. Polymer Sci., 7, 393–412, 1951.

    Article  CAS  Google Scholar 

  93. F.E. Harris and S.A. Rice, “A Chain Model of Polyelectrolytes. I.” J. Phys. Chem., 581, 725–732, 1954.

    Article  Google Scholar 

  94. J.Th.G. Overbeek, “The Dissociation and Titration Constants of Polybasic Acids.” Bull. Soc. Chim. Belg., 57, 252–261, 1948.

    Article  CAS  Google Scholar 

  95. C.-H. Luan, T. Parker, K.U. Prasad, and D.W. Urry, “DSC Studies of NaCl Effect on the Inverse Temperature Transition of Some Elastin-based Polytetra-, Polypenta-, and Polynonapeptides.” Biopolymers, 31, 465–475, 1991.

    Article  PubMed  CAS  Google Scholar 

  96. H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolyte Solutions. 3rd Ed. Rheinhold, New York, 1967.

    Google Scholar 

  97. D.W. Urry, “What is Elastin; What is Not.” Ultrastruct. Pathol., 4, 227–251, 1983.

    Article  PubMed  CAS  Google Scholar 

  98. D.W. Urry, K. Okamoto, R.D. Harris, C.F. Hendrix, and M.M. Long, “Synthetic, Cross-Linked Polypentapeptide of Tropoelastin: An Anisotropic, Fibrillar Elastomer.” Biochemistry, 15, 4083–4089, 1976.

    Article  PubMed  CAS  Google Scholar 

  99. D. W. Urry, “Free Energy Transduction in Polypeptides and Proteins Based on Inverse Temperature Transition.” Prog. Biophys. Molec. Biol., 57, 23–57, 1992.

    Article  CAS  Google Scholar 

  100. D. W. Urry, “Five Axioms for the Functional Design of Peptide-Based Polymers as Molecular Machines and Materials: Principle for Macromolecular Assemblies.” Biopolymers (Peptide Science), 47, 167–178 (1998).

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). Consilient Mechanisms for Diverse Protein-based Machines: The Efficient Comprehensive Hydrophobic Effect. In: What Sustains Life?. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4562-5_5

Download citation

Publish with us

Policies and ethics