Skip to main content

What Sustains Life? An Overview

  • Chapter
What Sustains Life?
  • 466 Accesses

Abstract

The physicist looks at the expanding universe, disassembling toward disorder, and views increasing disorder as the inevitable flow in nature. The chemist burns the oils that have accumulated over the millennia in the earth’s crust and energizes molecules to react. On a smaller scale, the chemist sees the march toward disorder; the oils become dispersed and disordered gases, and the excited new molecules become dormant. Both physicists and chemists look at living organisms—propagating, assembling, growing—and wonder, how can living matter act in such an inverse way to the nonliving matter of their experiences? On the other hand, biochemists and biophysicists look at molecular systems of a dissected organism and successfully describe a still functional component in terms of the equilibrium laws of physics and chemistry. So, how can living matter seem so different from nonliving matter?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.W. Urry, “Elastic Biomolecular Machines: Synthetic Chains of Amino Acids, Patterned After Those in Connective Tissue, Can Transform Heat and Chemical Energy into Motion.” Sci. Am. January 1995, 64–69.

    Google Scholar 

  2. C.B. Anfinsen, “Principles that Govern the Folding of Protein Chains.” Science, 181, 223–230, 1973.

    Article  PubMed  CAS  Google Scholar 

  3. D.W. Urry, “Protein Folding and the Movements of Life.” The World & I, (Natural Science, At The Edge), 6, 301–309, 1991.

    Google Scholar 

  4. A. Szent-Györgyi, “Studies on Muscle.” Acta Physiol. Scand., 9 (suppl XXV), 1–116, 1945.

    Google Scholar 

  5. D.W. Urry, “Molecular Machines: How Motion and Other Functions of Living Organisms Can Result from Reversible Chemical Changes.” Angew. Chem. (German) 105, 859–883, 1993; Angew. Chem. Int. Ed. Engl., 32, 819–841, 1993.

    Article  CAS  Google Scholar 

  6. D.W. Urry, “Physical Chemistry of Biological Free Energy Transduction as Demonstrated by Elastic Protein-based Polymers” invited Feature Article, J. Phys. Chem. B, 101, 11007–11028, 1997.

    Article  CAS  Google Scholar 

  7. C.S. Roy, “The elastic properties of the arterial wall.” J. Physiol., 3, 125–159, 1880.

    Google Scholar 

  8. D.W. Urry and T.M. Parker, “Mechanics of Elastin: Molecular Mechanism of Biological Elasticity and its Relevance to Contraction.” J. Muscle Res. Cell Motil., 23, 541–557, 2002; Special Issue, Mechanics of Elastic Biomolecules. H. Granzier, M. Kellermayer, W. Linke, Eds.

    Article  Google Scholar 

  9. L.B. Sandberg, N.T. Soskel, and J.B. Leslie, “Elastin Structure, Biosynthesis and Relation to Disease States.” N. Engl. J. Med., 304, 566–579, 1981.

    Article  PubMed  CAS  Google Scholar 

  10. H. Yeh, N. Ornstein-Goldstein, Z. Indik, P. Sheppard, N. Anderson, J.C. Rosenbloom, G. Cicila, K. Yoon, and Rosenbloom “Sequence Variation of Bovine Elastin mRNA Due to Alternative Splicing.” J. Collagen Rel. Res., 7, 235–247, 1987.

    CAS  Google Scholar 

  11. D.W. Urry, T. Hugel, M. Seitz, H. Gaub, L. Sheiba, J. Dea, J. Xu, and T. Parker “Elastin: A Representative Ideal Protein Elastomer.” Philos. Trans. R. Soc. Lond. B, 357, 169–184, 2002.

    Article  CAS  Google Scholar 

  12. D.W. Urry, T. Hugel, M. Seitz, H. Gaub, L. Sheiba, J. Dea, J. Xu, L. Hayes, F. Prochazka, and T. Parker, “Ideal Protein Elasticity: The Elastin Model.” In Elastomeric Proteins: Structures, Biomechanical Properties and Biological Roles. P.R. Shewry, A.S. Tatham, and A.J. Bailey, Eds. Cambridge University Press, The Royal Society; Chapter Four, pages 54–93, 2003.

    Google Scholar 

  13. E.O. Wilson, Consilience: The Unity of Knowledge. Alfred E. Knopf, New York, 1998, p. 8.

    Google Scholar 

  14. D.W. Urry, M.M. Long, and H. Sugano, “Cyclic Analog of Elastin Polyhexapeptide Exhibits an Inverse Temperature Transition Leading to Crystallization.” J. Biol. Chem., 253, 6301–6302, 1978.

    PubMed  CAS  Google Scholar 

  15. M.V. Stackelberg and H.R. Müller, “Zur Struktur der Gashydrate.” Naturwissenschaften, 38, 456–458, 1951.

    Article  Google Scholar 

  16. D.W. Urry, S.Q. Peng, J. Xu, and D.T. McPherson, “Characterization of Waters of Hydrophobic Hydration by Microwave Dielectric Relaxation.” J. Am. Chem. Soc., 119, 1161–1162, 1997.

    Article  CAS  Google Scholar 

  17. E. Schrödinger, What is Life? Cambridge University Press, Cambridge, England, first published in 1944, Canto edition with “Mind and Matter” and Autobiographical Sketches, Forward by R. Penrose, 1992.

    Google Scholar 

  18. J.A.V. Butler, “The Energy and Entropy of Hydration of Organic Compounds.” Trans. Faraday Soc., 33, 229–238, 1937.

    Article  CAS  Google Scholar 

  19. For more details, see, for example, D. Voet, J.G. Voet, and C.W. Pratt, Fundamentals of Biochemistry. John Wiley & Sons New York, 1999, pp. 529–561.

    Google Scholar 

  20. For more details, see, for example, D. Voet, J.G. Voet, and C.W. Pratt, Fundamentals of Biochemistry. John Wiley & Sons, New York, 1999, pp. 492–528.

    Google Scholar 

  21. D.W. Urry, L.C. Hayes, and D. Channe Gowda, “Electromechanical Transduction: Reduction-driven Hydrophobic Folding Demonstrated in a Model Protein to Perform Mechanical Work.” Biochem. Biophys. Res. Commun., 204, 230–237, 1994.

    Article  PubMed  CAS  Google Scholar 

  22. A. Pattanaik, D. Channe Gowda, and D.W. Urry, “Phosphorylation and Dephosphorylation Modulation of an Inverse Temperature Transition.” Biochem. Biophys. Res. Commun., 178, 539–545, 1991.

    Article  PubMed  CAS  Google Scholar 

  23. D.W. Urry, D. Channe Gowda, S.Q. Peng, and T.M. Parker, “Non-linear Hydrophobic-induced pKa Shifts: Implications for Efficiency of Conversion to Chemical Energy.” Chem. Phys. Lett., 239, 67–74, 1995. A millionfold increase in affinity is what would be required for pumping protons into the stomach.

    Article  CAS  Google Scholar 

  24. D.W. Urry, L.C. Hayes, D. Channe Gowda, S.Q. Peng, and N. Jing, “Electrochemical Transduction in Elastic Protein-based Polymers.” Biochem. Biophys. Res. Commun., 210, 1031–1039, 1995.

    Article  PubMed  CAS  Google Scholar 

  25. For more general details, see, for example, D. Voet, J.G. Voet, and C.W. Pratt, Fundamentals of Biochemistry. John Wiley & Sons, New York, 1999, pp. 180–186. Muscle contraction is also treated in some detail in Chapter 8.

    Google Scholar 

  26. P. Mitchell, “Keilin’s Respiratory Chain Concept and its Chemiosmotic Consequences.” Science, 206, 1148–1159, 1979.

    Article  PubMed  CAS  Google Scholar 

  27. I.Z. Steinberg, A. Oplatka, and A Katchalsky, “Mechanochemical Engines.” Nature, 210, 568–571, 1966.

    Article  CAS  Google Scholar 

  28. D.W. Urry, “Free Energy Transduction in Polypeptides and Proteins Based on Inverse Temperature Transitions.” Prog. Biophys. Mol. Biol., 57, 23–57, 1992.

    Article  PubMed  CAS  Google Scholar 

  29. D.M. Himmel, S. Gourinath, L. Reshetnikova, Y. Shen, A.G. Szent-Györgyi, and C. Cohen, “Crystallographic Findings on the Internally Uncoupled and Near Rigor States of Myosin: Further Insights into the Mechanics of the Motor.” Proc. Natl. Acad. Sci. U.S.A., 99, 12645–12650, 2002.

    Article  PubMed  CAS  Google Scholar 

  30. A.R. Fersht, “The Charging of tRNA.” In Accuracy in Molecular Processes: Its Control and Relevance to Living Systems, T.B.L. Kirkwood, R.F. Rosenberger, and D.J. Galas, Eds., Chapman and Hall, London, 1986, pp. 67–82.

    Google Scholar 

  31. D.W. Urry and H. Eyring, “Stereochemistry and Rate Theory in Protein Synthesis.” Arch. Biochem. Biophys., Suppl. 1, 52–62, 1962.

    Google Scholar 

  32. J. Bronowski, The Ascent of Man. Little, Brown and Company, Boston/Toronto, 1973, p. 110.

    Google Scholar 

  33. D.T. McPherson, J. Xu, and D.W. Urry, “Product Purification by Reversible Phase Transition Following E. coli Expression of Genes Encoding up to 251 Repeats of the Elastomeric Pentapeptide GVGVP.” Protein Expression Purification, 7, 51–57, 1996.

    Article  PubMed  CAS  Google Scholar 

  34. D.W. Urry, D.T. McPherson, J. Xu, H. Daniell, C. Guda, D.C. Gowda, N. Jing, T.M. Parker, “Proteinbased Polymeric Materials: Syntheses and Properties.” In The Polymeric Materials Encyclopedia: Synthesis, Properties and Applications, CRC Press, Boca Raton, pp. 7263–7279, 1996.

    Google Scholar 

  35. D.W. Urry and A. Pattanaik, “Elastic Proteinbased Materials in Tissue Reconstruction.” Ann. N.Y. Acad. Sci., 831, 32–46, 1997.

    Article  PubMed  CAS  Google Scholar 

  36. D.W. Urry, “Engineers of Creation.” Chemistry in Britain, 32, 39–42, 1996.

    CAS  Google Scholar 

  37. Dan W. Urry, “Elastic Molecular Machines in Metabolism and Soft Tissue Restoration.” TIBTECH, 17, 249–257 (1999).

    CAS  Google Scholar 

  38. N. Wang, J.P. Butler, and D.E. Ingber, “Mechanotransduction across the cell surface and through the cytoskeleton.” Science, 260, 1124–1127, 1993.

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). What Sustains Life? An Overview. In: What Sustains Life?. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4562-5_2

Download citation

Publish with us

Policies and ethics