Skip to main content

In Vitro Tubulogenesis of Endothelial Cells: Analysis of a Bifurcation Process Controlled by a Mechanical Switch

  • Chapter
Book cover Mathematical Modeling of Biological Systems, Volume I

Summary

The formation of new blood vessels in vivo is a multistep process in which sprouting endothelial cells (ECs) form tubes with lumina, these tubes being additionally organized as capillary networks. In vitro models of tubulogenesis have been developed to investigate this highly regulated multifactorial process, with special attention paid to the determinant role of mechanical interactions between ECs and the extracellular matrix (ECM). In agreement with experimental results obtained when culturing endothelial EAhy926 cells on fibrin gels, we defined theoretical thresholds between cellular traction and active cell migration along ECM strain fields above which tubulogenesis is induced.We additionally illustrated how mechanical factors may provide long-ranged positional information signals leading to localized network formation, thus providing an alternative view to the classical approach of morphogenesis based on gradients of diffusible morphogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrosi, D., Bussolino, F., Preziosi, L.: A review of vasculogenesis models. J. Theor. Med., 6, 1–19 (2005).

    MATH  MathSciNet  Google Scholar 

  2. Benkherourou, M., Rochas, C., Tracqui, P., Tranqui, L., Gumery, P.Y.: Standardization of a method for characterizing low-concentration biogels: elastic properties of low-concentration agarose gels. J. Biomech. Eng., 121, 184–187 (1999).

    Article  Google Scholar 

  3. Benkherourou, M., Gumery, P.Y., Tranqui, L. Tracqui, P.: Quantification and macroscopic modeling of the nonlinear viscoelastic behavior of strained gels with varying fibrin concentrations. IEEE Trans. Biomed. Eng., 47, 1465–1475 (2000).

    Article  Google Scholar 

  4. Bollenbach, T., Kruse, K., Pantazis, P., Gonzalez-Gaitan, M., Jülicher, F.: Robust formation of morphogen gradients. Phys. Rev. Lett., 94, 0181031–0181034 (2005).

    Article  Google Scholar 

  5. Cinquin, O: Fast-tracking morphogen diffusion. J. Theor. Biol., 238, 532–540 (2005).

    Article  MathSciNet  Google Scholar 

  6. Cook, J.: Mathematical models for dermal wound healing: wound contraction and scar formation. Ph.D. thesis, 98–133. University of Washington, Seattle (1995).

    Google Scholar 

  7. Cruywagen, G.C., Maini, P.K., Murray, J.D.: Biological pattern formation on two-dimensional spatial domains: A nonlinear bifurcation analysis. SIAM J. Appl. Math., 57, 1485– 1509 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  8. Gamba, A., Ambrosi, D., Coniglio, A., de Candia, A., Di Talia, S. Giraudo, E., Serini, G., Preziosi, L., Bussolino, F.: Percolation, morphogenesis and burgers dynamics in blood vessels formation. Phys. Rev. Lett., 90, 118101-1–118101-4 (2003).

    Article  Google Scholar 

  9. Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D., Betsholtz, C.: VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol., 161, 1163–1177 (2003).

    Article  Google Scholar 

  10. Ingber, D.E.: Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ. Res., 91, 877–887 (2002).

    Article  Google Scholar 

  11. Korff, T., Augustin, H.G.: Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J. Cell Sci., 112, 3249–3258 (1999).

    Google Scholar 

  12. Lo, C.M., Wang, H.B., Dembo, M., Wang, Y.L.: Cell movement is guided by the rigidity of the substrate. Biophys. J., 79, 144–152 (2000).

    Article  Google Scholar 

  13. Manoussaki, D., Lubkin, S.R., Vernon, R., Murray, J. D.: A mechanical model for the formation of vascular networks in vitro. Acta Biotheor., 44, 271–282 (1996).

    Article  Google Scholar 

  14. Murray, J.D., Oster, G.F.: Cell traction models for generating pattern and form in morphogenesis. J. Math. Biol., 19, 265–279 (1984).

    MATH  MathSciNet  Google Scholar 

  15. Murray, J.D.: Mathematical Biology, Vol. I, II. Springer, New York (2003).

    Google Scholar 

  16. Namy, P., Ohayon, J., Tracqui, P.: Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J. Theor. Biol., 227, 103–120 (2004).

    Article  MathSciNet  Google Scholar 

  17. Pelham Jr., R.J., Wang, Y.: Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA, 94, 13661–13665 (1997).

    Article  Google Scholar 

  18. Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., Bussolino, F.: Modeling the early stages of vascular network assembly. EMBO J., 22, 1771–1779 (2003).

    Article  Google Scholar 

  19. Tosin, A., Ambrosi, D., Preziosi, L.: Mechanics and chemotaxis in the morphogenesis of vascular networks. Bull. Math. Biol., 68, 1819–1836 (2006).

    Article  MathSciNet  Google Scholar 

  20. Tracqui, P.: Mechanical instabilities as a central issue for in silico analysis of cell dynamics. Proceedings IEEE, 94, 710–724 (2006).

    Article  Google Scholar 

  21. Tranqui, L., Tracqui, P.: Mechanical signalling and angiogenesis. The integration of cell-extracellular matrix couplings. C. R. Acad. Sci., 323, 31–47 (2000).

    Google Scholar 

  22. Vailhé, B., Ronot, X., Tracqui, P., Usson, Y., Tranqui, L.: In vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to avb3 integrin localization. In Vitro Cell. Dev. Biol. Anim., 33, 763–773 (1997).

    Article  Google Scholar 

  23. Vailhé, B., Lecomte, M., Wiernsperger, N., Tranqui, L.: The formation of tubular structures by endothelial cells is under the control of fibrinolysis and mechanical factors. Angiogenesis, 2, 331–344 (1998).

    Article  Google Scholar 

  24. Vailhé, B., Vittet, D., Feige, J.-J.: In vitro models of vasculogenesis and angiogenesis. Lab. Invest. 81, 439–452 (2001).

    Google Scholar 

  25. Vernon, R.B., Angello, J.C., Iruela-Arispe, M.L., Lane, T.F., Sage, E.H.: Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66, 536–547 (1992).

    Google Scholar 

  26. Vernon, R.B., Lara, S.L., Drake, C.J., Iruela-Arispe, M.L., Angello, J.C., Little, C.D., Wight, T.N., Sage, E.H.: Organized type I collagen influences endothelial patterns during “spontaneous angiogenesis in vitro”: planar cultures as models of vascular development. In Vitro Cell. Dev. Biol. 31, 120–131 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 springer

About this chapter

Cite this chapter

Tracqui, P., Namy, P., Ohayon, J. (2007). In Vitro Tubulogenesis of Endothelial Cells: Analysis of a Bifurcation Process Controlled by a Mechanical Switch. In: Deutsch, A., Brusch, L., Byrne, H., Vries, G.d., Herzel, H. (eds) Mathematical Modeling of Biological Systems, Volume I. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4558-8_5

Download citation

Publish with us

Policies and ethics