Skip to main content

Gaussian Mixture Decomposition of Time-Course DNA Microarray Data

  • Chapter

Summary

In this chapter we present the decomposition approach to the analysis of large gene expression profile data sets. We address the problem of analysis of transient time-course data of expression profiles. We accept the assumption that co-expression of genes can be related to their belonging to the same Gaussian component. We assume that parameters of Gaussian components, means and variances, can differ between time instants. However, the gene composition of components is unchanged between time instants. For such problem formulations we derive the appropriate version of expectation-maximization algorithm recursions for the estimation of model parameters.We apply the derived method to the data on gene expression profiles of human K562 erythroleukemic cells and we discuss the obtained gene clustering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Shahrour, F., Diaz-Uriarte, R., Dopazo, J.: FatiGO: a web tool for finding significant associations of Gene Ontology terms withgroups of genes, Bioinformatics, 20, 578–580 (2004).

    Article  Google Scholar 

  2. Bernardo, J., Smith, A.: Bayesian Theory. Wiley, New York (1994).

    MATH  Google Scholar 

  3. Bilmes, J.: A Gentle Tutorial on the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Technical Report, University of Berkeley, ICSI-TR-97-021, (1997). http://citeseer.ist.psu.edu/bilmes98gentle.html

    Google Scholar 

  4. Broet, P., Richardson, S., Radvanyi, F.: Bayesian hierarchical model for identifying changes in gene expression from microarray experiments. J. Comp. Biol. 9, 671–683 (2002).

    Article  Google Scholar 

  5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statistics Soc., Ser. B., 39, 1–38 (1977).

    MATH  MathSciNet  Google Scholar 

  6. Gene Ontology Consortium, http://www.geneontology.org

    Google Scholar 

  7. Ghosh, D.: Mixture models for assessing differential expression in complex tissues using microarray data. Bioinformatics, 20, 1663–1669 (2004).

    Article  Google Scholar 

  8. Ghosh, D., Chinnaiyan. A.M.: Mixture modelling of gene expression data from microarray experiments. Bioinformatics, 18, 275–286 (2002).

    Article  Google Scholar 

  9. Konopacka, M., Rogolinski, J., Herok, R., Polanska, J., Fujarewicz, K., Hancock, R., Rzeszowska-Wolny, J.: Radiation induced bystander effects in human leukemia K562 cells in vitro. Acta Biochim. Pol., 50(S1), 169–170 (2003).

    Google Scholar 

  10. McLachan, G.J., Bean, R.W., Peel, D.: A mixture model-based approach to the clustering of microarray expression data., Bioinformatics, 18, 413–422 (2002).

    Article  Google Scholar 

  11. McLachan, G.J., Peel, W.: Finite Mixture Distributions. Wiley, New York (2000).

    Google Scholar 

  12. Medvedovic, M., Sivaganesan, S.: Bayesian infinite mixture model based clustering of gene expression profiles. Bioinformatics, 18, 1194–1206 (2002).

    Article  Google Scholar 

  13. Medvedovic, M., Yeung, K.Y., Bumgarner, R.E.: Bayesian mixtures for clustering replicated microarray data. Bioinformatics, 20, 1222–1232 (2004).

    Article  Google Scholar 

  14. Ouyang, M., Welsh, W.J., Georgopoulos, P.: Gaussian mixture clustering and imputation of microarray data. Bioinformatics, 20 917–923 (2004).

    Article  Google Scholar 

  15. Richardson, S., Green, P.J.: On Bayesian analysis of mixtures with an unknown number of components. J. Royal Statistics Soc., Ser. B., 59, 731–792 (1997).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 springer

About this chapter

Cite this chapter

Polańska, J., Widĺak, P., Rzeszowska-Wolny, J., Kimmel, M., Polański, A. (2007). Gaussian Mixture Decomposition of Time-Course DNA Microarray Data. In: Deutsch, A., Brusch, L., Byrne, H., Vries, G.d., Herzel, H. (eds) Mathematical Modeling of Biological Systems, Volume I. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4558-8_31

Download citation

Publish with us

Policies and ethics