Skip to main content

Selective Regulation of Protein Activity by Complex Ca2+ Oscillations: A Theoretical Study

  • Chapter
Mathematical Modeling of Biological Systems, Volume I

Summary

Calcium oscillations play an important role in intracellular signal transduction. As a second messenger, Ca2+ represents a link between several input signals and several target processes in the cell. Whereas the frequency of simple Ca2+ oscillations enables a selective activation of a specific protein and herewith a particular process, the question arises of how at the same time two or more classes of proteins can be specifically regulated. The question is general and concerns the problem of how one second messenger can transmit more than one signal simultaneously (bow-tie structure of signalling). To investigate whether a complex Ca2+ signal like bursting, a succession of low-peak and high-peak oscillatory phases, could selectively activate different proteins, several bursting patterns with simplified square pulses were applied in a theoretical model. The results indicate that bursting Ca2+ oscillations allow a differential regulation of two different calcium-binding proteins, and hence, perform the desired function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berridge, M.J., Bootman, M.D., Lipp, P.: Calcium–a life and death signal. Nature, 395, 645–648 (1998).

    Article  Google Scholar 

  2. Dupont, G., Swillens, S., Clair, C., Tordjmann, T., Combettes, L.: Hierarchical organization of calcium signals in hepatocytes: from experiments to models. Biochim. Biophys. Acta, 1498, 134–152 (2000).

    Article  Google Scholar 

  3. Falcke, M.: Reading the patterns in living cells—the physics of Ca2+signaling. Adv. Phys., 53, 255–440 (2004).

    Article  Google Scholar 

  4. Schuster, S., Marhl, M., Höfer, T.: Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. FEBS J., 269, 1333–1355 (2002).

    Google Scholar 

  5. Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms. Cambridge University Press, Cambridge (1996).

    MATH  Google Scholar 

  6. De Koninck, P., Schulman, H.: Sensitivity of CaM kinase II to the frequency of Ca2+oscillations. Science, 279, 227–230 (1998).

    Article  Google Scholar 

  7. Kummer, U., Olsen, L.F., Dixon, C.J., Green, A.K., Bornberg-Bauer, E., Baier, G.: Switching from simple to complex oscillations in calcium signaling. Biophys. J., 79, 1188–1195 (2000).

    Article  Google Scholar 

  8. Dupont, G., Houart, G., De Koninck, P.: Sensitivity of CaM kinase II to the frequency of Ca2 +oscillations: a simple model. Cell Calcium, 34, 485–497 (2003).

    Article  Google Scholar 

  9. Dolmetsch, R.E., Lewis, R.S., Goodnow, C.C., Healy, J.I.: Differential activation of transcription factors induced by Ca2 +response amplitude and duration. Nature, 386, 855–858 (1997).

    Article  Google Scholar 

  10. Prank, K., Gabbiani, F., Brabant, G.: Coding ef?ciency and information rates in transmembrane signaling. Biosystems, 55, 15–22 (2000).

    Article  Google Scholar 

  11. Tompa, P., Toth-Boconadi, R., Friedrich, P.: Frequency decoding of fast calcium oscillations by calpain. Cell Calcium, 29, 161–170 (2001).

    Article  Google Scholar 

  12. Van Eldik, L.J., Watterson, D.M.: Calmodulin and Signal Transduction. Academic Press, London (1998).

    Google Scholar 

  13. Colbran, R.J.: Targeting of calcium/calmodulin-dependent protein kinase II. Biochem. J., 378, 1–16 (2004).

    Article  Google Scholar 

  14. Stull, J.T., Tansey, M.G., Tang, D.C., Word, R.A., Kamm, K.E.: Phosphorylation of myosin light chain kinase: a cellular mechanism for Ca2 +desensitization. Mol. Cell. Biochem., 127–128, 229–237 (1993).

    Article  Google Scholar 

  15. Webb, B.L.J., Hirst, S.J., Giembycz, M.A.: Protein kinase C isoenzymes: a review of their structure, regulation and role in regulating airways smooth muscle tone and mitogenesis. Brit. J. Pharmacol., 130, 1433–1452 (2000).

    Article  Google Scholar 

  16. Dixon, C.J., Woods, N.M., Cuthbertson, K.S.R., Cobbold, P.H.: Evidence for two Ca2 +mobilizing purinoceptors on rat hepatocytes. Biochem. J., 269, 499–502 (1990).

    Google Scholar 

  17. Dixon, C.J.: Evidence that 2-methylthioATP and 2-methylthioADP are both agonists at the rat hepatocyte P2Y1 receptor. Brit. J. Pharmacol., 130, 664–668 (2000).

    Article  Google Scholar 

  18. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurcat. Chaos, 10, 1171– 1266 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  19. Borghans, J.A.M., Dupont, G., Goldbeter, A.: Complex intracellular calcium oscillations. A theoretical exploration of possible mechanisms. Biophys. Chem., 66, 25–41 (1997).

    Article  Google Scholar 

  20. Houart, G., Dupont, G., Goldbeter, A.: Bursting, chaos and birhythmicity originating from self-modulation of the inositol 1,4,5,-trisphosphate signal in a model for intracellular Ca2 +oscillations. Bull. Math. Biol., 61, 507–530 (1999).

    Article  Google Scholar 

  21. Marhl, M., Haberichter, T., Brumen, M., Heinrich, R.: Complex calcium oscillations and the role of mitochondria and cytosolic proteins. BioSystems, 57, 75–86 (2000).

    Article  Google Scholar 

  22. Perc, M., Marhl, M.: Different types of bursting calcium oscillations in non-excitable cells. Chaos Sol. Fract., 18, 759–773 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  23. Larsen, A.Z., Kummer, U.: Information processing in calcium signal transduction. In: Falcke, M., Malchow, D. (Eds.) Understanding Calcium Dynamics: Experiments and Theory, Lecture Notes in Physics, Vol. 623. Springer, Berlin, pp. 153–178 (2003).

    Google Scholar 

  24. Rozi, A., Jia, Y.: A theoretical study of effects of cytosolic Ca2 +oscillations on activation of glycogen phosphorylase. Biophys. Chem., 106, 193–202 (2003).

    Article  Google Scholar 

  25. Larsen, A.Z., Olsen, L.F., Kummer, U.: On the encoding and decoding of calcium signals in hepatocytes. Biophys. Chem., 107, 83–99 (2004).

    Article  Google Scholar 

  26. Csete, M., Doyle, J.: Bow ties, metabolism and disease. Trends Biotechnol., 22, 446–450 (2004).

    Article  Google Scholar 

  27. Ma, H.W., Zeng, A.P.: The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics, 19, 1423–1430 (2003).

    Article  Google Scholar 

  28. Somsen, O.J, Siderius, M., Bauer, F.F., Snoep, J.L., Westerhoff, H.V.: Selectivity in overlapping MAP kinase cascades. J. Theor. Biol., 218, 343–354 (2002).

    Article  MathSciNet  Google Scholar 

  29. Li, Y.-X., Goldbeter, A.: Pulsatile signaling in intercellular communication. Biophys. J., 61, 161–171 (1992).

    Google Scholar 

  30. . Salazar, C., Politi, A., Höfer, T.: Decoding of calcium oscillations by phosphorylation cycles. Genome Informatics Series, 15, 50–51 (2004).

    Google Scholar 

  31. Gall, D., Baus, E., Dupont, G.: Activation of the liver glycogen phosphorylase by Ca2 +oscillations: a theoretical study. J. Theor. Biol., 207, 445–454 (2000).

    Article  Google Scholar 

  32. Shen, Y., Lee, Y.S., Soelaiman, S., Bergson, P., Lu, D., Chen, A., Beckingham, K., Grabarek, Z., Mrksich, M., Tang, W.-J.: Physiological calcium concentrations regulate calmodulin binding and catalysis of adenylyl cyclase exotoxins. EMBO J., 21, 6721–6732 (2002).

    Article  Google Scholar 

  33. Soelaiman, S., Wei, B.Q., Bergson, P., Lee, Y.-S., Shen, Y., Mrksich, M., Shoichet, B.K., Tang, W.-J.: Structure-based inhibitor discovery against adenylyl cyclase toxins from pathogenic bacteria that cause anthrax and whooping cough. J. Biol. Chem., 278, 25990– 25997 (2003).

    Article  Google Scholar 

  34. Falke, J.J., Drake, S.K., Hazard A.L., Peersen, O.B.: Molecular tuning of ion binding to calcium signaling proteins. Quart. Rev. Biophys., 27, 219–290 (1994).

    Google Scholar 

  35. Marhl, M., Schuster, S., Brumen, M., Heinrich, R.: Modelling oscillations of calcium and endoplasmatic reticulum transmembrane potential. Role of the signalling and buffering proteins and of the size of the Ca2 +sequestering ER subcompartments. Bioelectrochem. Bioenerg., 46, 79–90 (1998).

    Article  Google Scholar 

  36. Segel, I.H.: Enzyme Kinetics. Wiley, New York (1993).

    Google Scholar 

  37. Schuster, S., Knoke, B., Marhl, M.: Differential regulation of proteins by bursting calcium oscillations—a theoretical study. BioSystems, 81, 49–63 (2005).

    Article  Google Scholar 

  38. . Bezprozvanny, I., Watras, J., Ehrlich, B.E.: Bell-shaped calcium-response curves of Ins(1,4,5)P3-and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature, 351, 751–754 (1991).

    Article  Google Scholar 

  39. De Young, G.W., Keizer, J.: A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2 +concentration. Proc. Nat. Acad. Sci. USA, 89, 9895–9899 (1992).

    Article  Google Scholar 

  40. Ulmer, T.S., Soelaiman, S., Li, S., Klee, C.B., Tang, W.-J., Bax, A.: Calcium dependence of the interaction between calmodulin and anthrax edema factor. J. Biol. Chem., 278, 29261– 29266 (2003).

    Article  Google Scholar 

  41. Cho, M.J., Vaghy, P.L., Kondo, R., Lee, S.H., Davis, J.P., Rehl, R., Heo, W.D., Johnson, J.D.: Reciprocal regulation of mammalian nitric oxide synthase and calcineurin by plant calmodulin isoforms. Biochemistry, 37, 15593–15597 (1998).

    Article  Google Scholar 

  42. Lee, S.H., Kim, J.C., Lee, M.S., Heo, W.D., Seo, H.Y., Yoon, H.W., Hong, J.C., Lee, S.Y., Bahk, J.D., Hwang, I., Cho, M.J.: Identi?cation of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulin-dependent enzymes. J. Biol. Chem., 270, 21806–21812 (1995).

    Article  Google Scholar 

  43. Lee, S.H., Seo, H.Y., Kim, J.C., Heo, W.D., Chung, W.S., Lee, K.J., Kim, M.C., Cheong, Y.H., Choi, J.Y., Lim, C.O., Cho, M.J.: Differential activation of NAD kinase by plant calmodulin isoforms. J. Biological Chemistry, 272, 9252–9259 (1997).

    Article  Google Scholar 

  44. Lee, S.H., Johnson, J.D., Walsh, M.P., van Lierop, J.E., Sutherland, C., Xu, A., Snedden, W.A., Kosk-Kosicka, D., Fromm, H., Narayanan, N., Cho, M.J.: Differential regulation of Ca2 +/calmodulin-dependent enzymes by plant calmodulin isoforms and free Ca2 +concentration. J. Biol. Chem., 350, 299–306 (2000).

    Google Scholar 

  45. Crawford, N.M., Guo, F.-Q.: New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci., 10, 195–200 (2005).

    Article  Google Scholar 

  46. del Rio, L.A., Corpasa, F.J., Barroso, J.B.: Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry, 65, 783–792 (2004).

    Article  Google Scholar 

  47. . Weissman, B.A., Jones, C.L., Liu, Q., Gross, S.S.: Activation and inactivation of neuronal nitric oxide synthase: characterization of Ca2 +-dependent [125I]Calmodulin binding. Eur. J. Pharmacol., 435, 9–18 (2002).

    Article  Google Scholar 

  48. Delledonne, M., Xia, Y., Dixon, R.A., Lamb, C.: Nitric oxide functions as a signal in plant disease resistance. Nature, 394, 585–588 (1998).

    Article  Google Scholar 

  49. Durner, J., Wendehenne, D., Klessig, D.F.: Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc. Nat. Acad. Sci. USA, 95, 10328–10333 (1998).

    Article  Google Scholar 

  50. Bouche, N., Yellin, A., Snedden, W.A., Fromm, H.: Plant-speci?c calmodulin-binding proteins. Annu. Rev. Plant Biol., 56, 435–466 (2005).

    Article  Google Scholar 

  51. White, P.J., Broadley, M.R.: Calcium in plants. Annals of Botany, 92, 487–511 (2003).

    Article  Google Scholar 

  52. Nimchuk, Z., Eulgem, T., Holt, B.F., Dangl, J.L.: Recognition and response in the plant immune system. Annu. Rev. Genet., 37, 579–609 (2003).

    Article  Google Scholar 

  53. Heo, W.D., Lee, S.H., Kim, M.C., Kim, J.C., Chung, W.S., Chun, H.J., Lee, K.J., Park, C.Y., Park, H.C., Choi, J.Y., Cho, M.J.: Involvement of speci?c calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc. Nat. Acad. Sci. USA, 96, 766–771 (1999).

    Article  Google Scholar 

  54. Berridge, M.J.: The AM and FM of calcium signalling. Nature, 386, 759–760 (1997).

    Article  Google Scholar 

  55. Marhl, M., Perc, M., Schuster, S.: Selective regulation of cellular processes via protein cascades acting as band-pass ?lters for time-limited oscillations. FEBS Lett., 579, 5461– 5465 (2005).

    Google Scholar 

  56. Marhl, M., Perc, M., Schuster, S.: A minimal model for decoding of time-limited Ca2+oscillations. Biophys. Chem., 120, 161–167 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 springer

About this chapter

Cite this chapter

Knoke, B., Marhl, M., Schuster, S. (2007). Selective Regulation of Protein Activity by Complex Ca2+ Oscillations: A Theoretical Study. In: Deutsch, A., Brusch, L., Byrne, H., Vries, G.d., Herzel, H. (eds) Mathematical Modeling of Biological Systems, Volume I. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4558-8_2

Download citation

Publish with us

Policies and ethics