Skip to main content

Fractional Transport of Cancer Cells Due to Self-Entrapment by Fission

  • Chapter
Mathematical Modeling of Biological Systems, Volume I

Summary

A simple mathematical model is proposed to study the influence of cell fission on transport. The model describes fractional tumor development, which is a one-dimensional continuous time random walk (CTRW). An answer to the question of how the malignant neoplasm cells appear at an arbitrary distance from the primary tumor is proposed. The model is a possible consideration for diffusive cancers as well. A chemotherapy influence on the CTRW is studied by an observation of stationary solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahish, J.W., Jain, R.K.: Fractals and cancer. Cancer Research, 60, 3683–3688 (2000).

    Google Scholar 

  2. Baskin, E.M., Iomin, A.: Superdiffusion on a comb structure. Phys. Rev. Lett., 93, 120603 (2004).

    Article  Google Scholar 

  3. Bellomo, N., Preziosi, L.: Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math. Comput. Modelling, 32, 413–452 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  4. Gorenflo, R., Mainardi, F.: Fractional diffusion process: probability distributions and continuous time random walk. In: Processes With Long Range Correlations, pp. 148–166. Springer-Verlag, Berlin, (2003).

    Google Scholar 

  5. Gottlieb, M.E.: Vascular networks: fractal anatomies from non-linear physiologies. IEEE Eng. Med. Bio. Mag., 13, 2196 (1991).

    Google Scholar 

  6. Hilfer, R. (ed): Fractional Calculus in Physics. World Scientific, Singapore, (2000).

    MATH  Google Scholar 

  7. Iomin, A.: Superdiffusion of cancer on a comb structure. J. Phys.: Conference Series, 7, 57–67 (2005).

    Article  Google Scholar 

  8. Iomin, A.: Fractional transport of tumor cells. WSEAS Trans. Biol. Biomed., 2, 82–86 (2005)

    Google Scholar 

  9. Janke, E., Emde, F., Löosh, F.: Tables of Higher Functions. McGraw-Hill, New York, (1960).

    Google Scholar 

  10. Kamke, E.: Differentialgleichungen: Löosungen. Leipzig, (1959).

    Google Scholar 

  11. Keleg, S., BĂĽuchler, P., Ludwig, R., BĂĽuchler, M.W., Friess, H.: Invasion and metastasis in pancreatic cancer. Molecular Cancer, 2:14, (2003) .

    Google Scholar 

  12. Klafter, J., Blumen, A., Slesinger, M.F.: Stochastic pathway to anomalous diffusion. Phys. Rev. A, 35, 3081–3085 (1987).

    Article  MathSciNet  Google Scholar 

  13. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals, 7, 1461–1477 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  14. Mantzaris, N.V., Webb, S., Othmer, H.G.J.: Mathematical modeling of tumor-induced angiogenesis. Math. Biol., 49, 111–187 (2004).

    MATH  MathSciNet  Google Scholar 

  15. McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J., Sherratt, J.A.: Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol. 64, 673–702 (2002).

    Article  Google Scholar 

  16. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339, 1–77 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  17. Montroll, E.W., Weiss, G.H.: Random walks on lattices, II. J. Math. Phys., 6, 167–181 (1965).

    Article  MathSciNet  Google Scholar 

  18. Murray, J.D.: Mathematical Biology, Springer, Heidelberg1993).

    MATH  Google Scholar 

  19. Podlubny, I.: Fractional Differential Equations, Academic Press, San Diego1999).

    MATH  Google Scholar 

  20. Sherratt, J.A., Perumpanani, A.J., Owen, M.R.: Pattern formation. In: cancer, in On Growth and Form, Editors: Chaplain, M.A.J., Singh, G.D., McLachlan, J.C., pp. 47–73. Wiley, Chichester1999).

    Google Scholar 

  21. Swanson, K.R., Bridge, S., Murray, J.D., Alvord, Jr, E.S.: Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci., 216, 1–10 (2003).

    Article  Google Scholar 

  22. Weiss, G.H., Havlin, S.: Some properties of a random-walk on a comb structure. Physica A, 134, 474–482 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 springer

About this chapter

Cite this chapter

Iomin, A. (2007). Fractional Transport of Cancer Cells Due to Self-Entrapment by Fission. In: Deutsch, A., Brusch, L., Byrne, H., Vries, G.d., Herzel, H. (eds) Mathematical Modeling of Biological Systems, Volume I. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4558-8_17

Download citation

Publish with us

Policies and ethics