Skip to main content

Summary

Swarming pattern formation of self-propelled entities is a prominent example of collective behavior in biology. Here we focus on bacterial swarming and show that the rod shape of self-propelled individuals is able to drive swarm formation without any kind of signaling.

The underlying mechanism we propose is purely mechanical and is evidenced through two different mathematical approaches: an on-lattice and an off-lattice individual-based model. The intensities of swarm formation we obtain in both approaches uncover that the length-width aspect ratio controls swarm formation. Moreover we show that there is an optimal aspect ratio that favors swarming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bussemarker, J.H., Deutsch, A., Geigant, E.: Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion. Phys. Rev. Lett., 78, 5018–5021 (1997).

    Article  Google Scholar 

  2. Czirók, A., Vicsek, T.: Collective behavior of interacting self-propelled particles. Physica A, 281, 17–29 (2000).

    Article  Google Scholar 

  3. Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation—Characterization, Applications, and Analysis. Birkhäuser, Boston (2005).

    MATH  Google Scholar 

  4. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Oxford University Press, London (1986).

    Google Scholar 

  5. Dworkin, M.: Recent advances in the social and developmental biology of the myxobacteria. Microbiol. Rev., 60, 70–102 (1996).

    Google Scholar 

  6. Graner, F., Glazier, J.A.: Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett., 69, 2013–2016 (1992).

    Article  Google Scholar 

  7. Igoshin, O.A., Welch, R., Kaiser, D., Oster, G.: Waves and aggregation patterns in myxobacteria. Proc. Natl. Acad. Sci. U.S.A., 101, 4256–4261 (2004).

    Article  Google Scholar 

  8. Jelsbak, L., Søgaard-Andersen, L.: Pattern formation: fruiting body morphogenesis in Myxococcus xanthus. Curr. Opin. Microbiol., 3, 637–642 (2000).

    Article  Google Scholar 

  9. Kaiser, D., Welch, R.: Dynamics of fruiting body morphogenesis. J. Bacteriol., 186, 919– 927 (2004).

    Article  Google Scholar 

  10. Koch, A., White, D.L.: The social lifestyle of myxobacteria. Bioessays, 20, 1030–1028 (1998).

    Article  Google Scholar 

  11. Levine, A., Liverpool, T., MacKintosh, F.: Dynamics of rigid and flexible extended bodies in viscous films and membranes. Phys. Rev. Lett., 93, 038102 (2004).

    Article  Google Scholar 

  12. Levine, A., Liverpool, T., MacKintosh, F.: Mobility of extended bodies in viscous films and membranes. Phys. Rev. E, 69, 021503 (2004).

    Article  Google Scholar 

  13. Mareé, S.: From pattern formation to morphogenesis: multicellular coordination in Dictyostelium discoideum. Ph.D. thesis, University Utrecht (2002).

    Google Scholar 

  14. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculation by fast computing machines. J. Chem. Phys., 21, 1087–1092 (1953).

    Article  Google Scholar 

  15. Peruani, F., Deutsch, A., Bär, M.: Nonequilibrium clustering of self-propelled rods. Phys. Rev.E, 74, 030904(R) (2006).

    Article  Google Scholar 

  16. Spormann, A.M., Kaiser, D.: Gliding movements in Myxococcus xanthus. J. Bacteriol., 177, 5846–5852 (1995).

    Google Scholar 

  17. Starruß, J.,Søgaard-Andersen, L., Bley, T., Deutsch, A.: A new mechanism for collective migration in Myxococcus xanthus. J. Stat. Phys., (2007).

    Google Scholar 

  18. Stevens, A.: A stochastic cellular automaton modeling gliding and aggregation of myxobacteria. SIAM J. Appl. Math., 61, 172–182 (2000).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 springer

About this chapter

Cite this chapter

Starruß, J., Peruani, F., Bär, M., Deutsch, A. (2007). Bacterial Swarming Driven by Rod Shape. In: Deutsch, A., Brusch, L., Byrne, H., Vries, G.d., Herzel, H. (eds) Mathematical Modeling of Biological Systems, Volume I. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4558-8_14

Download citation

Publish with us

Policies and ethics