Skip to main content

Saturation Effects in Population Dynamics: Use Branching Processes or Dynamical Systems?

  • Chapter
Mathematical Modeling of Biological Systems, Volume II
  • 2438 Accesses

Summary

This chapter deals with the behavior of a branching population undergoing saturation effects when it becomes too large. We study in particular the limits of the prediction given in the setting of the deterministic dynamical system related to the stochastic branching process modeling the evolution of the population. We also generalize the usual Markovian branching processes of order one to size-dependent branching processes that may have a longer memory and give conditions leading to an almost sure extinction of the process while the dynamical system is persistent. The notion of reproductive rate is explained and generalized. We give some examples, in particular the amplification process in the polymerase chain reaction (PCR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Athreya, K.B., Ney, P.E.: Branching Processes. Dover Publications, Inc., Mineola, NY (2004), xii+287pp.

    MATH  Google Scholar 

  2. Elaydi, S.: An Introduction to Difference Equations. Third edition. Undergraduate Texts in Mathematics. Springer, New York (2005), xxii+539pp.

    MATH  Google Scholar 

  3. Haccou, P., Jagers, P., Vatutin, V.A.: Branching Processes Variation, Growth, and Extinction of Populations. Cambridge Studies in Adaptative Dynamics, Cambridge (2005), 316pp.

    MATH  Google Scholar 

  4. Högnäs, G.: On the quasi-stationary distribution of a stochastic Ricker model. Stochastic Process Appl., 70, 243–263 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  5. Holte, J.M.: Extinction probability for a critical general branching process. Stochastic Processes Appl., 2, 303–309 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  6. Jacob, C.: Population dynamics: modeling by branching processes or by dynamical systems? Technical Report 2005–7, MIA unity, INRA, Jouy-en-Josas, France (2005).

    Google Scholar 

  7. Jacob, C., Peccoud, J.: Estimation of the parameters of a branching process from migrating binomial observations. Adv. Appl. Prob., 30, 948–967 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  8. Jacob, C., Viet, A.F.: Epidemiological modeling in a branching population. Particular case of a general SIS model with two age classes. Math. Biosci., 182, 93–111 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  9. Jagers, P., Klebaner, F.: Random variation and concentration effects in PCR. J. Theoret. Biol., 224, 299–304 (2003).

    Article  MathSciNet  Google Scholar 

  10. Klebaner, F.C.: Population-size-dependent branching process with linear rate of growth. J. Appl. Probab., 20, 242–250 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  11. Klebaner, F.C.: On population-size-dependent branching processes. Adv. in Appl. Probab., 16, 30–55 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  12. Klebaner, F. C., Lazar, J., Zeitouni, O.: On the quasi-stationary distribution for some randomly perturbed transformations of an interval. Ann. Appl. Probab., 8, 300–315 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  13. Klebaner, F. C., Zeitouni, O.: The exit problem for a class of density-dependent branching systems. Ann. Appl. Probab., 4, 1188–1205 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  14. Kolmogorov, A.N., Savostyanov, B.A.: The calculation of final probabilities for branching random processes. Doklady Akad. Nauk SSSR (N.S.), 56, 783–786 (1947) 60.0X.

    MATH  MathSciNet  Google Scholar 

  15. Lalam, N., Jacob, C., Jagers, P.: Modelling the PCR amplification process by a sizedependent branching process and estimation of the efficiency. Adv. in Appl. Probab., 36, 602–615 (2004).

    Article  MathSciNet  Google Scholar 

  16. Olofsson, U.: Branching processes: Polymerase Chain Reaction and mutation age estimation. Thesis, Department of Mathematical Statistics, Chalmers University of Technology, Götebord, Sweden (2003).

    Google Scholar 

  17. Peccoud, J., Jacob, C.: Theoretical Uncertainty of Measurements Using Quantitative Polymerase Chain Reaction. Biophysical J., 71, 101–108 (1996).

    Article  Google Scholar 

  18. Schnell, S., Mendoza, C.: Enzymological Considerations for a Theoretical Description of the Quantitative Competitive Polymerase Chain Reaction (QC-PCR). J. Theor. Biol., 184, 433–440 (1997).

    Article  Google Scholar 

  19. Seneta, E.: Functional equations and the Galton-Watson process. Advances in Appl. Probability, 1, 1–42 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  20. Stenseth, N.C., Falck, W., Bjornstad, O.N., Krebs, C.J.: Population regulation in snowshoe hare and Canadian lynx: Asymmetric food web configurations between hare and lynx. Proc. Natl. Acad. Sci. USA, 94, 5147–5152 (1997).

    Article  Google Scholar 

  21. Yaglom, A.M.: Certain limit theorems of the theory of branching random processes. Doklady Akad. Nauk SSSR (N.S.), 56, 795–798 (1947), in Russian.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Boston

About this chapter

Cite this chapter

Jacob, C. (2008). Saturation Effects in Population Dynamics: Use Branching Processes or Dynamical Systems?. In: Deutsch, A., et al. Mathematical Modeling of Biological Systems, Volume II. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4556-4_30

Download citation

Publish with us

Policies and ethics