Skip to main content

Offdiagonal Complexity: A Computationally Quick Network Complexity Measure—Application to Protein Networks and Cell Division

  • Chapter

Summary

Many complex biological, social, and economical networks show topologies drastically differing from random graphs. But what is a complex network, i.e., how can one quantify the complexity of a graph? Here the Offdiagonal Complexity (OdC), a new, and computationally cheap, measure of complexity is defined, based on the node-node link cross-distribution, whose nondiagonal elements characterize the graph structure beyond link distribution, cluster coefficient, and average path length. The OdC approach is applied to the Helicobacter pylori protein interaction network and randomly rewired surrogates thereof. In addition, OdC is used to characterize the spatial complexity of cell aggregates. We investigate the earliest embryo development states of Caenorhabditis elegans. The development states of the premorphogenetic phase are represented by symmetric binary-valued cell connection matrices with dimension growing from 4 to 385. These matrices can be interpreted as adjacency matrices of an undirected graph, or network. The OdC approach allows us to describe quantitatively the complexity of the cell aggregate geometry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442 (1998).

    Article  Google Scholar 

  2. Barabasi, A.L., Albert, R.: Emergence of scaring in random networks. Science, 286, 509– 512 (1999).

    Article  MathSciNet  Google Scholar 

  3. Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47–97 (2002).

    Article  MathSciNet  Google Scholar 

  4. Barabasi, A.-L.: Linked. Plume Books, New York (2003).

    Google Scholar 

  5. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Adv. Phys., 51, 1079 (2002).

    Article  Google Scholar 

  6. Newman, M.E.J.: The structure and function of complex networks. cond-mat/0303516. SIAM Review, 45, 167–256 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  7. Bornholdt, S., Schuster, H.-G. (eds): Handbook of Graphs and Networks. Wiley-VCH, Berlin (2002).

    Google Scholar 

  8. Gell-Mann, M., Lloyd, S.: Information measures, effective complexity, and total information. Complexity, 2(1), 44–52 (1996).

    Article  MathSciNet  Google Scholar 

  9. Gell-Mann, M.: What is complexity? Complexity, 1(1), 16–19 (1995).

    MATH  MathSciNet  Google Scholar 

  10. Wilhelm, T.: An elementary dynamic model for nonbinary food-webs. Ecol. Model., 168, 145–152 (2004).

    Article  Google Scholar 

  11. Meyer-Ortmanns, H.: Functional complexity measure for networks. Physica A, 337, 679– 690 (2004).

    Article  MathSciNet  Google Scholar 

  12. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science, 298, 824–827 (2002).

    Article  Google Scholar 

  13. Machta, B., Machta, J.: Parallel dynamics and computational complexity of network growth models. Phys. Rev. E, 71, 026704 (2005).

    Article  Google Scholar 

  14. Claussen, J.C.: AKSOE 3.10, Verhandl. Deutsche Phys. Ges., Regensburg (2004), extended version of unpublished talk draft, Nov. 11, 2003.

    Google Scholar 

  15. Claussen, J.C.: Characterization of networks by the Offdiagonal Complexity, Physica A, 375, 365–373 (2007). doi:10.1016/j.physa.2006.08.067.

    Google Scholar 

  16. Sakaguchi, H.: Self-organization of hierarchical structures in nonlocally coupled replicator models. Phys. Lett. A, 313, 188–191 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  17. Helicobacter pylori data, http://www.cosin.org, http://www.helico.com.

    Google Scholar 

  18. Krämer, A.: PhDthesis, Kiel 2002, http://e-diss.uni-kiel.de/diss 617.

    Google Scholar 

  19. Krämer, A.: unpublished; Betten, A., Betten, D.: The proper linear spaces on 17 points. Discr. Appl. Math., 95, 83–108 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Boston

About this chapter

Cite this chapter

Claussen, J.C. (2008). Offdiagonal Complexity: A Computationally Quick Network Complexity Measure—Application to Protein Networks and Cell Division. In: Deutsch, A., et al. Mathematical Modeling of Biological Systems, Volume II. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4556-4_25

Download citation

Publish with us

Policies and ethics