Skip to main content

Methods and tools of mathematical kinetic theory towards modelling complex biological systems

  • Chapter

Abstract

Methods of mathematical kinetic theory have been recently developed to describe the collective behavior of large populations of interacting individuals such that their microscopic state is identified not only by a mechanical variable (typically position and velocity), but also by a biological state (or sociobiological state) related to their organized, somehow intelligent, behavior. The interest in this type of mathematical approach is documented in the collection of surveys edited in [1], in the review papers [2], [3], and in the book [4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Bellomo and M. Pulvirenti, Eds., Modeling in Applied Sciences: A Kinetic Theory Approach, Birkhäuser, Boston, 2000.

    MATH  Google Scholar 

  2. N. Bellomo, E. De Angelis, and L. Preziosi, Multiscale modelling and mathematical problems related to tumor evolution and medical therapy, J. Theor. Medicine, 5, 111–136, (2003).

    Article  MATH  Google Scholar 

  3. N. Bellomo, A. Bellouquid, and M. Delitala, Mathematical topics in the modelling complex multicellular systems and tumor immune cells competition, Math. Mod. Meth. Appl. Sci., 14, 1683–1733, (2004).

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Bellouquid and M. Delitala, Modelling Complex Systems in Biology—A Kinetic Theory Approach, Birkhäuser, Boston, 2006)

    Google Scholar 

  5. L. Arlotti, N. Bellomo, and E. De Angelis, Generalized kinetic (Boltzmann) models: Mathematical structures and applications, Math. Mod. Meth. Appl. Sci., 12, 579–604, (2002).

    Article  Google Scholar 

  6. C. Cercignani, R. Illner, and M. Pulvirenti, Theory and Application of the Boltzmann Equation, Springer, Heidelberg, 1993.

    Google Scholar 

  7. F. Schweitzer, Brownian Agents and Active Particles, Springer, Berlin, 2003.

    MATH  Google Scholar 

  8. N. Bellomo and G. Forni, Dynamics of tumor interaction with the host immune system, Math. Comp. Mod., 20, 107–122, (1994).

    Article  MATH  Google Scholar 

  9. L. Arlotti, M. Lachowicz, and A. Gamba, A kinetic model of tumor/immune system cellular interactions, J. Theor. Medicine, 4, 39–50, (2002).

    Article  MATH  Google Scholar 

  10. E. De Angelis and P.E. Jabin, Qualitative analysis of a mean field model of tumor-immune system competition, Math. Mod. Meth. Appl. Sci., 13, 187–206, (2003).

    Article  MATH  Google Scholar 

  11. M. Kolev, Mathematical modeling of the competition between acquired immunity and cancer, Appl. Math. Comp. Science, 13, 289–297, (2003).

    MATH  MathSciNet  Google Scholar 

  12. A. Bellouquid and M. Delitala, Kinetic (cellular) models of cell progression and competition with the immune system, Z. Agnew. Math. Phys., 55, 295–317, (2004).

    MATH  MathSciNet  Google Scholar 

  13. L. Derbel, Analysis of a new model for tumor-immune system competition including long time scale effects, Math. Mod. Meth. Appl. Sci., 14, 1657–1682,(2004).

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Willander, E. Mamontov, and Z. Chiragwandi, Modelling living fluids with the subdivision into the components in terms of probability distributions, Math. Mod. Meth. Appl. Sci., 14, 1495–1521, (2004).

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Kolev, A mathematical model of cellular immune response to leukemia, Math. Comp. Mod., 41, 1071–1082, (2005).

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Kolev, E. Kozlowska, and M. Lachowicz, Mathematical model of tumor invasion along linear or tubular structures, Math. Comp. Mod., 41, 1083–1096, (2005).

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Bellouquid and M. Delitala, Mathematical methods and tools of kinetic theory towards modelling of complex biological systems, Math. Mod. Meth. Appl. Sci., 15, (2005), 1619–1638.

    Article  MathSciNet  Google Scholar 

  18. M.L. Bertotti and M. Delitala, From discrete kinetic and stochastic game theory to modeling complex systems in applied sciences, Math. Mod. Meth. Appl. Sci., 14, 1061–1084, (2004).

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Chauviere and I. Brazzoli, On the discrete kinetic theory for active particles—Mathematical tools, Math. Comp. Mod., 43, 933–944, (2006).

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Greller, F. Tobin, and G. Poste, Tumor heterogeneity and progression: conceptual foundation for modeling, Invasion and Metastasis, 16, 177–208, (1996).

    Google Scholar 

  21. B. Perthame, Mathematical tools for kinetic equations, Bull. Am. Math. Society, 41, 205–244, (2004).

    Article  MATH  MathSciNet  Google Scholar 

  22. C. Villani, Recent advances in the theory and applications of mass transport, Contemp. Math. Amer. Math. Soc., 353, 95–109, (2004).

    MathSciNet  Google Scholar 

  23. J. Adam and N. Bellomo, Eds., A Survey of Models on Tumor Immune Systems Dynamics, Birkhäuser, Boston, 1997.

    Google Scholar 

  24. L. Preziosi, Modeling Cancer Growth, CRC Press, Boca Raton, 2003.

    Google Scholar 

  25. M. Lachowicz, Micro and meso scales of description corresponding to a model of tissue invasion by solid tumours, Math. Mod. Meth. Appl. Sci., 15, 1667–1684, (2005).

    Article  MATH  MathSciNet  Google Scholar 

  26. M.A.J. Chaplain and G. Lolas, Spatio-temporal heterogeneity arising in a mathematical model of cancer invasion of tissue, Math. Mod. Meth. Appl. Sci., 15, 1685–1778, (2005).

    Article  MATH  MathSciNet  Google Scholar 

  27. N. Bellomo and A. Bellouquid, From a class of kinetic models to macroscopic equations for multicellular systems in biology, Discrete Contin. Dyn. Syst. B, 4, 59–80, (2004).

    Article  MATH  MathSciNet  Google Scholar 

  28. N. Bellomo and A. Bellouquid, On the mathematical kinetic theory of active particles with discrete states—the derivation of macroscopic equations, Math. Comp. Mod., (2006).

    Google Scholar 

  29. T. Hillen and H. Othmer, The diffusion limit of transport equations derived from velocity jump processes, SIAM J. Appl. Math., 61, (2000), 751–775.

    Article  MATH  MathSciNet  Google Scholar 

  30. A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particles systems, SIAM J. Appl. Math., 61, 183–212, (2000).

    Article  MATH  MathSciNet  Google Scholar 

  31. H.L. Hartwell, J.J. Hopfield, S. Leibner, and A.W. Murray, From molecular to modular cell biology, Nature, 402, c47–c52, (1999).

    Article  Google Scholar 

  32. R. Reed, Why is mathematical biology so hard?, Notices of the American Mathematical Society, 51, 338–342, (2004).

    MATH  MathSciNet  Google Scholar 

  33. R.M. May, Uses and abuses of mathematics in biology, Science, 303, 790–793, (2004).

    Article  Google Scholar 

  34. C.R. Woese, A new biology for a new century, Microbiology and Molecular Biology Reviews, 68, 173–186, (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Boston

About this chapter

Cite this chapter

Bellomo, N., Bellouquid, A., Delitala, M. (2007). Methods and tools of mathematical kinetic theory towards modelling complex biological systems. In: Cercignani, C., Gabetta, E. (eds) Transport Phenomena and Kinetic Theory. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4554-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-4554-0_8

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-4489-5

  • Online ISBN: 978-0-8176-4554-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics