Inverse problems for semiconductors: models and methods

  • A. Leitão
  • P. A. Markowich
  • J. P. Zubelli
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


The starting point of the mathematical model discussed in this chapter is the system of drift diffusion equations (see (6.2.1a)–(6.2.1f) below). This system of equations, derived more than fifty years ago [vRo50], is the most widely used to describe semiconductor devices. For the current state of technology, this system represents an accurate compromise between efficient numerical solvability of the mathematical model and realistic description of the underlying physics [Mar86, MRS90, Sel84].


Inverse Problem Electrical Impedance Tomography Stationary Drift Iteration Error Truncate Singular Value Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [APL05]
    Astala, K., Päivärinta, L., Lassas, M.: Calderón’s inverse problem for anisotropic conductivity in the plane. Comm. Partial Differential Equations 30, 207–224 (2005).MATHCrossRefMathSciNetGoogle Scholar
  2. [BL05]
    Baumeister, J., Leitão, A.: Topics in inverse problems. Mathematical Publications of IMPA. ISBN: 85-244-0224-5 25th Brazilian Mathematics Colloquium. Rio de Janeiro, Brazil (2005).Google Scholar
  3. [Bor02]
    Borcea, L.: Electrical impedance tomography. Inverse Problems 18, R99–R136 (2002).MATHCrossRefMathSciNetGoogle Scholar
  4. [BU02]
    Bukhgeim, A., Uhlmann, G.: Recovering a potential from partial Cauchy data. Comm. Partial Differential Equations 27, 653–668 (2002).MATHCrossRefMathSciNetGoogle Scholar
  5. [BELM04]
    Burger, M., Engl, H.W., Leitão, A., Markowich, P.A.: On inverse problems for semiconductor equations. Milan Journal of Mathematics 72, 273–314 (2004).MATHCrossRefMathSciNetGoogle Scholar
  6. [BEMP01]
    Burger, M., Engl, H.W., Markowich, P.A., Pietra, P.: Identification of doping profiles in semiconductor devices. Inverse Problems 17, 1765–1795 (2001).MATHCrossRefMathSciNetGoogle Scholar
  7. [BEM02]
    Burger, M., Engl, H.W., Markowich, P.A.: Inverse doping problems for semiconductor devices. In: Chan, T.F., Huang, Y., Tang, T., Xu, J.A, Ying, L.A. (eds) Recent Progress in Computational and Applied PDEs. Kluwer/Plenum, New York, 39–53 (2002).Google Scholar
  8. [BF91]
    Busenberg, S., Fang, W.: Identification of semiconductor contact resistivity. Quart. Appl. Math. 49, 639–649 (1991).MATHMathSciNetGoogle Scholar
  9. [BFI93]
    Busenberg, S., Fang, W., Ito, K.: Modeling and analysis of laser-beam-inducted current images in semiconductors. SIAM J. Appl. Math. 53, 187–204 (1993).MATHCrossRefMathSciNetGoogle Scholar
  10. [Bur01]
    Burger, M.: A level set method for inverse problems. Inverse Problems 17, 1327–1355 (2001).MATHCrossRefMathSciNetGoogle Scholar
  11. [DES98]
    Deuflhard, P., Engl, H.W., Scherzer, O.: A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions. Inverse Problems 14, 1081–1106 (1998).MATHCrossRefMathSciNetGoogle Scholar
  12. [EHN96]
    Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publishers, Dordrecht (1996).MATHGoogle Scholar
  13. [EKN89]
    Engl, H.W., Kunisch, K., Neubauer, A.: Convergence rates for Tikhonov regularization of nonlinear ill-posed problems. Inverse Problems 5, 523–540 (1989).MATHCrossRefMathSciNetGoogle Scholar
  14. [ES00]
    Engl, H.W., Scherzer, O.: Convergence rates results for iterative methods for solving nonlinear ill-posed problems. In: Colton, D., Engl, H.W., Louis, A.K., McLaughlin, J.R., Rundell, W. (eds), Surveys on Solution Methods for Inverse Problems. Springer, Vienna, 7–34 (2000).Google Scholar
  15. [FC92]
    Fang, W., Cumberbatch, E.: Inverse problems for metal oxide semiconductor field-effect transistor contact resistivity. SIAM J. Appl. Math. 52, 699–709 (1992).MATHCrossRefMathSciNetGoogle Scholar
  16. [FI92]
    Fang, W., Ito, K.: Identifiability of semiconductor defects from LBIC images. SIAM J. Appl. Math. 52, 1611–1626 (1992).MATHCrossRefMathSciNetGoogle Scholar
  17. [FI94]
    Fang, W., Ito, K.: Reconstruction of semiconductor doping profile from laser-beam-induced current image. SIAM J. Appl. Math. 54, 1067–1082 (1994).MATHCrossRefMathSciNetGoogle Scholar
  18. [FIR02]
    Fang, W., Ito, K., Redfern, D.A.: Parameter identification for semiconductor diodes by LBIC imaging. SIAM J. Appl. Math. 62, 2149–2174 (2002).MATHCrossRefMathSciNetGoogle Scholar
  19. [FSL05]
    Frühauf, F., Scherzer, O., Leitão, A.: Analysis of regularization methods for the solution of ill-posed problems involving discontinuous operators. SIAM J Numerical Analysis 43, 767–786 (2005).MATHCrossRefGoogle Scholar
  20. [Gaj85]
    Gajewski, H.: On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors. Z. Angew. Math. Mech. 65, 101–108 (1985).MATHCrossRefMathSciNetGoogle Scholar
  21. [GV89]
    Golub, G.H., Van Loan, C.F.: Matrix Computations (Second ed.) Johns Hopkins University Press, Baltimore, MD (1989).MATHGoogle Scholar
  22. [Gri85]
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pittman Publishing, London (1985).MATHGoogle Scholar
  23. [HNS95]
    Hanke, M., Neubauer, A., Scherzer, O.: A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72, 21–37 (1995).MATHCrossRefMathSciNetGoogle Scholar
  24. [Isa98]
    Isakov, V.: Inverse problems for partial differential equations. Applied Mathematical Sciences, Springer, New York (1998).Google Scholar
  25. [KS02]
    Kowar, R., Scherzer, O.: Convergence analysis of a Landweber-Kaczmarz method for solving nonlinear ill-posed problems. In: Kabanikhin, S.I., Romanov, V.G. (eds), Ill-Posed and Inverse Problems. VSP, Boston, 253–270 (2002).Google Scholar
  26. [LS03]
    Leitão, A., Scherzer, O.: On the relation between constraint regularization, level sets, and shape optimization. Inverse Problems 19, L1–L11 (2003).MATHCrossRefGoogle Scholar
  27. [LMZ05]
    Leitão, A., Markowich, P.A., Zubelli, J.P.: On inverse doping profile problems for the stationary voltage-current map. Inverse Problems, 22, no. 3, 1071–1088 (2006).MATHCrossRefMathSciNetGoogle Scholar
  28. [Mar86]
    Markowich, P.A.: The Stationary Semiconductor Device Equations. Springer, Vienna (1986).Google Scholar
  29. [MRS90]
    Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Vienna (1990).MATHGoogle Scholar
  30. [Nac96]
    Nachman, A.I.: Global uniqueness for a two-dimensional inverse boundary value problem. Ann. of Math. 143, 71–96 (1996).MATHCrossRefMathSciNetGoogle Scholar
  31. [OS88]
    Osher, S., Sethian, J.: Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulation. J. of Computational Physics., 56, 12–49 (1988).CrossRefMathSciNetGoogle Scholar
  32. [San95]
    Santosa, F.: A level-set approach for inverse problems involving obstacles, ESAIM Contrôle Optim. Calc. Var., 1, 17–33 (1995/96).CrossRefMathSciNetGoogle Scholar
  33. [Sch91]
    Scherzer, O.: Tikhonov regularization of nonlinear ill-posed problems with applications to parameter identification in partial differential equations. PhD Thesis Johannes-Kepler-Universität, Linz (1991).Google Scholar
  34. [Sel84]
    Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, New York (1984).Google Scholar
  35. [TA77]
    Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-posed Problems. John Wiley & Sons, New York (1977).MATHGoogle Scholar
  36. [vRo50]
    van Roosbroeck, W.R.: Theory of flow of electrons and holes in germanium and other semiconductors. Bell Syst. Tech. J. 29, 560–607 (1950).Google Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • A. Leitão
    • 1
  • P. A. Markowich
    • 2
  • J. P. Zubelli
    • 3
  1. 1.Department of MathematicsFederal University of St. CatarinaFlorianopolisBrazil
  2. 2.Department of MathematicsUniversity of ViennaViennaAustria
  3. 3.IMPARio de JaneiroBrazil

Personalised recommendations