Multiband quantum transport models for semiconductor devices

  • Luigi Barletti
  • Lucio Demeio
  • Giovanni Frosali
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


The modeling of semiconductor devices, which is a very active and intense field of research, has to keep up with the speed at which the fabrication technology proceeds; the devices of the last generations have become increasingly smaller, reaching a size so small that quantum effects dominate their behaviour. Quantum effects such as resonant tunneling and other size-quantized effects cannot be described by classical or semiclassical theories; they need a full quantum description [Fre90, JAC92, KKFR89, MRS90, RBJ91, RBJ92]. A very important feature, which has appeared in the devices of the last generation and which requires a full quantum treatment, is the presence of the interband current: a contribution to the total current which arises from transitions between the conduction and the valence band states. Resonant interband tunneling diodes (RITDs) are examples of semiconductor devices which exploit this phenomenon; they are of big importance in nanotechnology for their applications to high-speed and miniaturized systems [YSDX91, SX89]. In the band diagram structure of these diodes there is a small region where the valence band edge lies above the conduction band edge (valence quantum well), making interband resonance possible.


Semiconductor Device Wigner Function Envelope Function Quantum Transport Bloch Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AF05]
    Alì, G., Frosali, G.: Quantum hydrodynamic models for the two-band Kane system, Nuovo Cimento B, 120(12), 1279–1298 (2005).Google Scholar
  2. [AFM05]
    Alì, G., Frosali, G., and Manzini, C.: On the drift-diffusion model for a two-band quantum fluid at zero-temperature. Ukrainian Math. J., 57(6), 723–730 (2005).MATHCrossRefMathSciNetGoogle Scholar
  3. [AP05]
    Allaire, G., Piatnitski, A.: Homogenization of the Schrödinger equation and effective mass theorems. Comm. Math. Phys., 258(1), 1–22 (2005).MATHCrossRefMathSciNetGoogle Scholar
  4. [Bar03a]
    Barletti, L.: A mathematical introduction to the Wigner formulation of quantum mechanics. Boll. Unione Mat. Ital., B, 6-B, 693–716 (2003).MathSciNetGoogle Scholar
  5. [Bar03b]
    Barletti, L.: Wigner envelope functions for electron transport in semiconductor devices. Transport Theory Statist. Phys., 32(3&4), 253–277 (2003).MATHCrossRefMathSciNetGoogle Scholar
  6. [Bar04a]
    Barletti, L.: A “spinorial” Wigner function describing the two-band kp dynamics of electrons in crystals. In: Primicerio, M., Spigler, R., and Valente, V. (eds.) Applied and Industrial Mathematics in Italy. World Scientific, Singapore (2005).Google Scholar
  7. [Bar04b]
    Barletti, L.: On the thermal equilibrium of a quantum system described by a two-band Kane Hamiltonian. Nuovo Cimento B, 119(12), 1125–1140 (2004).Google Scholar
  8. [Bar05]
    Barletti, L.: Quantum moment equations for a two-band k.p Hamiltonian. Boll. Unione Mat. Ital., B, 8-B, 103–121 (2005).MathSciNetGoogle Scholar
  9. [BD02]
    Barletti, L., Demeio, L.: Wigner function approach to multiband transport in semiconductor devices, Proc. VI Congresso SIMAI, Chia Laguna (CA-Italy) May 27–31, 2002. Versione su CD-rom.Google Scholar
  10. [BLP78]
    Bensoussan, A., Lions, J.-L., and Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978).MATHGoogle Scholar
  11. [BJ99]
    Bordone, P., Pascoli, M., Brunetti, R., Bertoni, A., and Jacoboni, C.: Quantum transport of electrons in open nanostructures with the Wigner function formalism, Phys. Rev. B, 59, 3060–3069 (1999).CrossRefGoogle Scholar
  12. [BFZ03]
    Borgioli, G., Frosali, G., and Zweifel, P. F.: Wigner approach to the two-band Kane model for a tunneling diode. Transport Theory Statist. Phys. 32(3&4), 347–366 (2003).MATHCrossRefMathSciNetGoogle Scholar
  13. [Buo74]
    Buot, F. A.: Method for calculating TrH n in solid-state theory. Phys. Rev. B, 10, 3700–3705 (1974).CrossRefGoogle Scholar
  14. [Buo76]
    Buot, F. A.: Magnetic susceptibility of interacting free and Bloch electrons. Phys. Rev. B, 14, 3310–3328 (1976).CrossRefGoogle Scholar
  15. [Buo86]
    Buot, F. A.: Direct construction of path integrals in the lattice-space multiband dynamics of electrons in a solid. Phys. Rev. A, 33, 2544–2562 (1986).CrossRefGoogle Scholar
  16. [BJ90]
    Buot, F. A., Jensen, K. L.: Lattice Weyl-Wigner formulation of exact many-body quantum-transport theory and applications to novel solid-state quantum-based devices. Phys. Rev. B, 42, 9429–9457 (1990).CrossRefGoogle Scholar
  17. [Bur92]
    Burt, M. G.: The justification for applying the effective-mass approximation to microstructure. J. Phys: Condens. Matter, 4, 6651–6690 (1992).CrossRefGoogle Scholar
  18. [DR03]
    Degond, P., Ringhofer, C.: Quantum moment hdrodynamics and the entropy principle. Journal Stat. Phys., 112(3), 587–628 (2003).MATHCrossRefMathSciNetGoogle Scholar
  19. [DBBBJ02]
    Demeio, L., Barletti, L., Bertoni, A., Bordone, P., and Jacoboni, C.: Wigner function approach to multiband transport in semiconductors. Physica B, 314, 104–107 (2002).CrossRefGoogle Scholar
  20. [DBBJ02]
    Demeio, L., Barletti, L., Bordone P., and Jacoboni, C.: Wigner function for multiband transport in semiconductors. Transport Theory Statist. Phys., 32(3&4), 307–325 (2003).MATHCrossRefMathSciNetGoogle Scholar
  21. [DBJ03a]
    Demeio, L., Bordone, P., and Jacoboni, C.: Numerical and analytical applications of multiband transport in semiconductors. Proc. XXIII Symposium on Rarefied Gas Dynamics, Whistler, BC, Canada, July 20–25, 2002, pp. 92–98 (AIP Conference Proceedings vol. 663, New York, 2003).Google Scholar
  22. [DBJ03b]
    Demeio, L., Bordone, P., and Jacoboni, C.: Multi-band, non-parabolic Wigner function approach to electron transport in semiconductors. Internal Report N. 3/2003, Dipartimento di Scienze Matematiche, Università Politecnica delle Marche, April 2003, Transport Theory Statist. Phys., (to appear).Google Scholar
  23. [Fey72]
    Feynman, R. P.: Statistical Mechanics: A Set of Lectures, Addison-Wesley, Reading (1972).Google Scholar
  24. [Fre90]
    Frensley, W. R.: Boundary conditions for open quantum systems far from equilibrium. Rev. Mod. Phys., 62, 745–791(1990).CrossRefGoogle Scholar
  25. [FM05]
    Frosali, G., Morandi, O.: A quantum kinetic approach for modeling a two-band resonant tunneling diode. Transport Theory Statist. Phys. (submitted).Google Scholar
  26. [Gar94]
    Gardner, C. L.: The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math., 54, 409–427 (1994).MATHCrossRefMathSciNetGoogle Scholar
  27. [GMU95]
    Gasser, I., Markowich, P. A., and Unterreiter, A.: Quantum hydrodynamics. In Proceedings of the SPARCH GdR Conference, held in St. Malo (1995).Google Scholar
  28. [IK86]
    Iafrate, G. J., Krieger, J. B.: Quantum transport for Bloch electrons for inhomogeneous electric fields. Phys. Rev. B, 40, 6144–6148 (1989).CrossRefGoogle Scholar
  29. [JAC92]
    Jacoboni, C.: Comparison between quantum and classical results in hot-electron transport, Semicomd. Sci. Technol., 7, B6–B11 (1992).CrossRefGoogle Scholar
  30. [JBBB01]
    Jacoboni, C., Brunetti, R., Bordone, P., and Bertoni, A.: Quantum transport and its simulation with the Wigner function approach. In Brennan, K., Paul Ruden, P. (eds.) Topics in High Field Transport in Semiconductors. World Scientific, Singapore (2001), pp. 25–61.Google Scholar
  31. [Jun01]
    Jüngel, A.: Quasi-hydrodynamic Semiconductor Equations. Birkhäuser, Basel (2001).MATHGoogle Scholar
  32. [Kan56]
    Kane, E. O.: Energy band structure in p-type Germanium and Silicon. J. Phys. Chem. Solids, 1, 82–89 (1956).CrossRefGoogle Scholar
  33. [Kef03]
    Kefi, J.: Analyse mathématique et numérique de modèles quantiques pour les semiconducteurs. PhD Thesis, Université Toulouse III-Paul Sabatier (2003).Google Scholar
  34. [KKFR89]
    Kluksdahl, N. C., Kriman, A. M., Ferry, D. K., and Ringhofer, C.: Self-consistent study of the resonant-tunneling diode. Phys. Rev. B, 39(11), 7720–7735 (1989).CrossRefGoogle Scholar
  35. [KI87]
    Krieger, J. B., Iafrate, G. J.: Quantum transport for bloch electrons in a spatially homogeneous electric field. Phys. Rev. B, 35, 9644–9658 (1987).CrossRefGoogle Scholar
  36. [LL77]
    Landau, L. D., Lifshitz, E. M.: Quantum Mechanics: Non-Relativistic Theory. Pergamon Press, Oxford (1977).Google Scholar
  37. [LK55]
    Luttinger, J. M., Kohn, W.: Motion of electrons and holes in perturbed periodic fields. Phys. Rev. II, 97, 869–882 (1955).MATHCrossRefGoogle Scholar
  38. [MMP94]
    Markowich, P. A., Mauser, N. J., and Poupaud, F.: A Wigner function approach to (semi)classical limits: Electrons in a periodic potential. J. Math. Phys., 35(3), 1066–1094 (1994).MATHCrossRefMathSciNetGoogle Scholar
  39. [MRS90]
    Markowich, P. A., Ringhofer, Ch. A., and Schmeiser, Ch.: Semiconductor Equations. Springer-Verlag, Wien (1990).MATHGoogle Scholar
  40. [MM05]
    Modugno, M., Morandi, O.: A multiband envelope function model for quantum transport in a tunneling diode. Phys. Rev. B, 71, 235331 (2005).CrossRefGoogle Scholar
  41. [PR96]
    Poupaud, F., Ringhofer, C.: Semi-classical limits in a crystal with exterior potentials and effective mass theorems. Comm. Partial Differential Equations 21(11–12), 1897–1918 (1996).MATHCrossRefMathSciNetGoogle Scholar
  42. [RS72]
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I: Functional Analysis. Academic Press, New York (1972).Google Scholar
  43. [RBJ91]
    Rossi, F., Brunetti, R., and Jacoboni, C.: An introduction to charge quantum transport in semiconductors and numerical approaches. In Ferry, D. K., Barker, J. R. (eds.) Granular Nanoelectronics. Plenum Press, New York (1991), pp. 43–61.Google Scholar
  44. [RBJ92]
    Rossi, F., Brunetti, R., and Jacoboni, C.: Quantum Transport, in Shah, J. (ed.) Hot Carriers in Semiconductors Nanostructures: Physics and Applications. Academic Press, San Diego (1992), pp. 153–188.Google Scholar
  45. [SX89]
    Sweeney M., Xu, J. M.: Resonant interband tunnel diodes. Appl. Phys. Lett., 54(6), 546–548 (1989).CrossRefGoogle Scholar
  46. [Wan62]
    Wannier, G. H.: Dynamics of band electrons in electric and magnetic fields. Rev. Mod. Phys., 34, 645–655 (1962).CrossRefMathSciNetGoogle Scholar
  47. [Wen99]
    Wenckebach, W. T.: Essential of Semiconductor Physics. John Wiley & Sons, Chichester (1999).Google Scholar
  48. [Wig32]
    Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40, 749–759 (1932).MATHCrossRefGoogle Scholar
  49. [YSDX91]
    Yang, R. Q., Sweeny, M., Day, D., and Xu, J. M.: Interband tunneling in heterostructure tunnel diodes. IEEE Transactions on Electron Devices, 38(3), 442–446 (1991).CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • Luigi Barletti
    • 1
  • Lucio Demeio
    • 2
  • Giovanni Frosali
    • 3
  1. 1.Dipartimento di Matematica “U. Dini”Università degli Studi di FirenzeFirenzeItaly
  2. 2.Dipartimento di Scienze MatematicheUniversità Politecnica delle MarcheAnconaItaly
  3. 3.Dipartimento di Matematica “G.Sansone”Università di FirenzeFirenzeItaly

Personalised recommendations