Nonresonant velocity averaging and the Vlasov-Maxwell system

  • François Golse
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


The Vlasov equation governs the number density in single-particle phase space of a large particle system (typically a rarefied ionized gas or plasma), subject to some external force field (for instance the Lorentz force acting on charged particles). Most importantly, collisions between particles are neglected in the Vlasov equation, unlike the case of the Boltzmann equation. Hence the only possible source of nonlinearity in the Vlasov equation for charged particles is the self-consistent electromagnetic field created by charges in motion: each particle is subject to the electromagnetic field created by all the particles other than itself.


Cauchy Problem Fundamental Solution Vlasov Equation Collisionless Plasma Maxwell System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ambrosio, L., Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158 (2004), 227–260.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Bouchut, F., Golse, F., Pallard, C., Nonresonant smoothing for coupled wave+transport equations and the Vlasov-Maxwell system, Revistà Mat. Iberoam. 20 (2004), 865–892.MATHMathSciNetGoogle Scholar
  3. [3]
    Bouchut, F., Golse, F., Pallard, C., Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system, Arch. for Rational Mech. and Anal. 170 (2003), 1–15.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    DiPerna, R.J., Lions, P.-L., Global weak solutions of the Vlasov-Maxwell system, Comm. on Pure and Appl. Math. 42 (1989), 729–757.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    DiPerna, R.J., Lions, P.-L., Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989), 511–547.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Gel’fand, I.M., Shilov, G.E., Generalized functions. Vol. 1. Properties and operations. Academic Press, New York-London, 1964.Google Scholar
  7. [7]
    Glassey, R., Strauss, W., High velocity particles in a collisionless plasma. Math. Methods Appl. Sci. 9 (1987), 46–52.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Glassey, R., Strauss, W., Absence of shocks in an initially dilute collisionless plasma. Comm. Math. Phys. 113 (1987), 191–208.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Glassey, R., Strauss, W., Large velocities in the relativistic Vlasov-Maxwell equations. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), 615–627.MATHMathSciNetGoogle Scholar
  10. [10]
    Glassey, R.T., Schaeffer, J.W., Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data. Comm. Math. Phys. 119 (1988), 353–384.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Glassey, R.T., Schaeffer, J.W., The “two and one-half-dimensional” relativistic Vlasov Maxwell system. Comm. Math. Phys. 185 (1997), 257–284.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Glassey, R.T., Schaeffer, J.W., The relativistic Vlasov-Maxwell system in two space dimensions. I, II. Arch. for Rational Mech. and Anal. 141 (1998), 331–354 & 355–374.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Glassey, R.T., Strauss, W.A., Singularity formation in a collisionless plasma could occur only at high velocities. Arch. for Rational Mech. and Anal. 92 (1986), 59–90.MATHMathSciNetGoogle Scholar
  14. [14]
    Jackson, J.D., Classical Electrodynamics Wiley, New York, 1975.MATHGoogle Scholar
  15. [15]
    Klainerman, S., Staffilani, G., A new approach to study the Vlasov-Maxwell system, Comm. on Pure and Appl. Anal. 1 (2002), 103–125.MATHMathSciNetGoogle Scholar
  16. [16]
    Landau, L.D., Lifshitz, E.M., Cours de Physique Théorique. Vol. 2: Théorie des champs, Editions Mir, Moscow, 1970.Google Scholar
  17. [17]
    Pallard, C., Nonresonant smoothing in Sobolev spaces for coupled wave+transport equations, Bull. Sci. Math. 127 (2003), 705–718.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Peral, J., L p estimates for the wave equation, J. Funct. Anal. 36 (1980), 114–145.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Seeger, A.; Sogge, C.D.; Stein, E.M. Regularity properties of Fourier integral operators. Ann. of Math. (2) 134 (1991), 231–251.CrossRefMathSciNetGoogle Scholar
  20. [20]
    Stein, E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970.MATHGoogle Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • François Golse
    • 1
  1. 1.Université Paris 7 & Laboratoire Jacques-Louis LionsParis cedex 05

Personalised recommendations