Skip to main content

Results on optimal rate of convergence to equilibrium for spatially homogeneous Maxwellian gases

  • Chapter
Transport Phenomena and Kinetic Theory
  • 1666 Accesses

Abstract

This chapter aims to provide a unified presentation of some recent studies (see [CGT99], [CCG00], [BGR05], [CCG05] and [GR05]) on the convergence to equilibrium of the solution of Boltzmann’s equation for Maxwellian pseudomolecules and, in particular, of the solution of Kac’s analog of Boltzmann’s equation. The main feature of these researches, with respect to the other ones, is the pursuit of the optimal rate of exponential convergence both in a weighted X-metric (see for example [GTW95]) and in the total variation metric for probability measures. For the definition of these metrics see the next section. Now, recall the following basic facts about the aforesaid equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Arkeryd: Stability in L* for the spatially homogeneous Boltzmann equation. Arch. Rat. Mech. Anal. 103, 151–167 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Bassetti, E. Gabetta, E. Regazzini: On the depth of the trees in the McKean representation of Wild’s sums. IMATI Publication N.27-PV (2005); to appear in Transport Theory and Stat. Phys.

    Google Scholar 

  3. E. A. Carlen, M. C. Carvalho: Probabilistic methods in kinetic theory. Riv. Mat. Univ. Parma (7) 2*, 101–149 (2003).

    MathSciNet  Google Scholar 

  4. E. A. Carlen, M. C. Carvalho, E. Gabetta: Central limit theorem for Maxwellian molecules and truncation of the Wild expansion. Comm. Pure Appl. Math., 53, 370–397 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  5. E. A. Carlen, M. C. Carvalho, E. Gabetta: On the relation between rates of relaxation and convergence of Wild sums for solutions of the Kac equation. J. Func. Anal. 220, 362–387 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  6. E. A. Carlen, E. Gabetta, G. Toscani: Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Commun. Math. Phys. 305, 521–546 (1999).

    Article  MathSciNet  Google Scholar 

  7. C. Cercignani, R. Illner, M. Pulvirenti: The Mathematical Theory of Dilute Gases. Springer, New York (1994).

    MATH  Google Scholar 

  8. C. Cercignani, M. Lampis, C. Sgarra: L 2-stability near equilibrium of the solution of the homogeneous Boltzmann equation in the case of Maxwellian molecules. Meccanica 23, 15–18 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Comtet: Analyse Combinatoire, Presses Universitaire de France, Paris (1970).

    Google Scholar 

  10. R. A. Fisher: On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. London. A222, 309–368. CP18 (1922).

    Article  Google Scholar 

  11. R. A. Fisher: Theory of statistical estimation. Proc. Cambridge Philos. Soc. 22, 700–725, CP42 (1925).

    Article  MATH  Google Scholar 

  12. G. B. Folland: Real Analysis: Modern Techniques and Their Applications (2nd ed.), Wiley, New York (1999).

    MATH  Google Scholar 

  13. E. Gabetta, E. Regazzini: Some new results for McKean’s graphs with applications to Kac’s equation. IMATI Publications N.28-PV (2005); to appear in Jour. Stat. Phys.

    Google Scholar 

  14. E. Gabetta, G. Toscani, B. Wennberg: Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation. J. Stat. Physics, 81, nos. 5/6, 901–934 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  15. E. Ikenberry, C. Truesdell: On the pressure and the flux of energy according to Maxwell’s kinetic energy. I. J. Rat. Mech. Anal. 5, 1–54 (1956).

    MathSciNet  Google Scholar 

  16. M. Kac: Foundations of kinetic theory. Proceedings of the third Berkeley Symposium on Mathematical and Statistical Problems. J. Neyman, ed. University of California, vol. 3, 171–197 (1956).

    Google Scholar 

  17. M. Kac: Probability and Related Topics in Physical Sciences. (Lectures in Applied Mathematics) Interscience Publishers, Ltd, London (1959).

    MATH  Google Scholar 

  18. Yu. V. Linnik: An information-theoretic proof of the central limit theorem with the Lindeberg condition. Theory of Prob. and its Applications, vol. IV, no. 3, 288–299 (1959).

    Article  Google Scholar 

  19. H. P. McKean Jr.: Speed of approach to equilibrium for Kac’s caricature of a Maxwellian gas. Arch. Rat. Mech. Anal. 21, 343–367 (1966).

    Article  MathSciNet  Google Scholar 

  20. H. P. McKean Jr.: An exponential formula for solving Boltzmann’s equation for a Maxwellian gas. J. Combin. Theory, 2, 358–382 (1967).

    Article  MATH  MathSciNet  Google Scholar 

  21. D. Morgenstern: General existence and uniqueness proof for spatially homogeneous solutions of the Maxwell-Boltzmann equation in the case of Maxwellian molecules. Proc. Nat. Acad. Sci. 40, 719–721 (1954).

    Article  MATH  MathSciNet  Google Scholar 

  22. W. Magnus, F. Oberhettinger, R. P. Soni: Formulas and Theorems for the Special Functions of Mathematical Physics, Springer, Berlin (1966).

    MATH  Google Scholar 

  23. S. T. Rachev: Probability Metrics and the Stability of Stochastic Modules, Wiley, Chichester (1991).

    Google Scholar 

  24. C. Villani: Topics on Optimal Transportation. Am. Math. Soc., Providence, RI (2003).

    Google Scholar 

  25. B. Wennberg: Stability and exponential convergence in L p for the spatially homogeneous Boltzmann equation. Nonlinear Anal. 20, no. 8, 935–964 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  26. I. Wild: On Boltzmann’s equation in the kinetic theory of gases. Proc. Cambridge Philos. Soc. 47, 602–609 (1951).

    MATH  MathSciNet  Google Scholar 

  27. C. S. Wang Chang, G. E. Uhlenbeck: The Kinetic Theory of Gases. In: Studies in Statistical Mechanics V, eds. J. de Boer and G. E. Uhlenbeck, Amsterdam: North-Holland Publishing Co., 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Boston

About this chapter

Cite this chapter

Gabetta, E. (2007). Results on optimal rate of convergence to equilibrium for spatially homogeneous Maxwellian gases. In: Cercignani, C., Gabetta, E. (eds) Transport Phenomena and Kinetic Theory. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4554-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-4554-0_2

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-4489-5

  • Online ISBN: 978-0-8176-4554-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics