Advertisement

Results on optimal rate of convergence to equilibrium for spatially homogeneous Maxwellian gases

  • Ester Gabetta
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

This chapter aims to provide a unified presentation of some recent studies (see [CGT99], [CCG00], [BGR05], [CCG05] and [GR05]) on the convergence to equilibrium of the solution of Boltzmann’s equation for Maxwellian pseudomolecules and, in particular, of the solution of Kac’s analog of Boltzmann’s equation. The main feature of these researches, with respect to the other ones, is the pursuit of the optimal rate of exponential convergence both in a weighted X-metric (see for example [GTW95]) and in the total variation metric for probability measures. For the definition of these metrics see the next section. Now, recall the following basic facts about the aforesaid equations.

Keywords

Fisher Information Optimal Rate Exponential Convergence Fourth Moment Total Variation Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ar88]
    L. Arkeryd: Stability in L* for the spatially homogeneous Boltzmann equation. Arch. Rat. Mech. Anal. 103, 151–167 (1988).MATHCrossRefMathSciNetGoogle Scholar
  2. [BGR05]
    F. Bassetti, E. Gabetta, E. Regazzini: On the depth of the trees in the McKean representation of Wild’s sums. IMATI Publication N.27-PV (2005); to appear in Transport Theory and Stat. Phys.Google Scholar
  3. [CC03]
    E. A. Carlen, M. C. Carvalho: Probabilistic methods in kinetic theory. Riv. Mat. Univ. Parma (7) 2*, 101–149 (2003).MathSciNetGoogle Scholar
  4. [CCG00]
    E. A. Carlen, M. C. Carvalho, E. Gabetta: Central limit theorem for Maxwellian molecules and truncation of the Wild expansion. Comm. Pure Appl. Math., 53, 370–397 (2000).MATHCrossRefMathSciNetGoogle Scholar
  5. [CCG05]
    E. A. Carlen, M. C. Carvalho, E. Gabetta: On the relation between rates of relaxation and convergence of Wild sums for solutions of the Kac equation. J. Func. Anal. 220, 362–387 (2005).MATHCrossRefMathSciNetGoogle Scholar
  6. [CGT99]
    E. A. Carlen, E. Gabetta, G. Toscani: Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Commun. Math. Phys. 305, 521–546 (1999).CrossRefMathSciNetGoogle Scholar
  7. [CIP94]
    C. Cercignani, R. Illner, M. Pulvirenti: The Mathematical Theory of Dilute Gases. Springer, New York (1994).MATHGoogle Scholar
  8. [CLS88]
    C. Cercignani, M. Lampis, C. Sgarra: L 2-stability near equilibrium of the solution of the homogeneous Boltzmann equation in the case of Maxwellian molecules. Meccanica 23, 15–18 (1988).MATHCrossRefMathSciNetGoogle Scholar
  9. [Co70]
    L. Comtet: Analyse Combinatoire, Presses Universitaire de France, Paris (1970).Google Scholar
  10. [Fi22]
    R. A. Fisher: On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. London. A222, 309–368. CP18 (1922).CrossRefGoogle Scholar
  11. [Fi25]
    R. A. Fisher: Theory of statistical estimation. Proc. Cambridge Philos. Soc. 22, 700–725, CP42 (1925).CrossRefMATHGoogle Scholar
  12. [Fo99]
    G. B. Folland: Real Analysis: Modern Techniques and Their Applications (2nd ed.), Wiley, New York (1999).MATHGoogle Scholar
  13. [GR05]
    E. Gabetta, E. Regazzini: Some new results for McKean’s graphs with applications to Kac’s equation. IMATI Publications N.28-PV (2005); to appear in Jour. Stat. Phys.Google Scholar
  14. [GTW95]
    E. Gabetta, G. Toscani, B. Wennberg: Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation. J. Stat. Physics, 81, nos. 5/6, 901–934 (1995).MATHCrossRefMathSciNetGoogle Scholar
  15. [IT56]
    E. Ikenberry, C. Truesdell: On the pressure and the flux of energy according to Maxwell’s kinetic energy. I. J. Rat. Mech. Anal. 5, 1–54 (1956).MathSciNetGoogle Scholar
  16. [Ka56]
    M. Kac: Foundations of kinetic theory. Proceedings of the third Berkeley Symposium on Mathematical and Statistical Problems. J. Neyman, ed. University of California, vol. 3, 171–197 (1956).Google Scholar
  17. [Ka59]
    M. Kac: Probability and Related Topics in Physical Sciences. (Lectures in Applied Mathematics) Interscience Publishers, Ltd, London (1959).MATHGoogle Scholar
  18. [Li59]
    Yu. V. Linnik: An information-theoretic proof of the central limit theorem with the Lindeberg condition. Theory of Prob. and its Applications, vol. IV, no. 3, 288–299 (1959).CrossRefGoogle Scholar
  19. [MK66]
    H. P. McKean Jr.: Speed of approach to equilibrium for Kac’s caricature of a Maxwellian gas. Arch. Rat. Mech. Anal. 21, 343–367 (1966).CrossRefMathSciNetGoogle Scholar
  20. [MK67]
    H. P. McKean Jr.: An exponential formula for solving Boltzmann’s equation for a Maxwellian gas. J. Combin. Theory, 2, 358–382 (1967).MATHCrossRefMathSciNetGoogle Scholar
  21. [Mo54]
    D. Morgenstern: General existence and uniqueness proof for spatially homogeneous solutions of the Maxwell-Boltzmann equation in the case of Maxwellian molecules. Proc. Nat. Acad. Sci. 40, 719–721 (1954).MATHCrossRefMathSciNetGoogle Scholar
  22. [MOS66]
    W. Magnus, F. Oberhettinger, R. P. Soni: Formulas and Theorems for the Special Functions of Mathematical Physics, Springer, Berlin (1966).MATHGoogle Scholar
  23. [Ra91]
    S. T. Rachev: Probability Metrics and the Stability of Stochastic Modules, Wiley, Chichester (1991).Google Scholar
  24. [Vi03]
    C. Villani: Topics on Optimal Transportation. Am. Math. Soc., Providence, RI (2003).Google Scholar
  25. [We93]
    B. Wennberg: Stability and exponential convergence in L p for the spatially homogeneous Boltzmann equation. Nonlinear Anal. 20, no. 8, 935–964 (1993).MATHCrossRefMathSciNetGoogle Scholar
  26. [Wi51]
    I. Wild: On Boltzmann’s equation in the kinetic theory of gases. Proc. Cambridge Philos. Soc. 47, 602–609 (1951).MATHMathSciNetGoogle Scholar
  27. [WU70]
    C. S. Wang Chang, G. E. Uhlenbeck: The Kinetic Theory of Gases. In: Studies in Statistical Mechanics V, eds. J. de Boer and G. E. Uhlenbeck, Amsterdam: North-Holland Publishing Co., 1970.Google Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • Ester Gabetta
    • 1
  1. 1.Dipartimento di MatematicaUniversità degli Studi di PaviaPaviaItalia

Personalised recommendations